输入问题...
初级微积分 示例
解题步骤 1
求在何处表达式 无定义。
解题步骤 2
垂直渐近线出现在无穷不连续点的所在区域。
不存在垂直渐近线
解题步骤 3
思考一下有理函数 ,其中 是分子的幂, 是分母的幂。
1. 如果 ,那么 X 轴,即 为水平渐近线。
2. 如果 ,那么水平渐近线为直线 。
3. 如果 ,那么水平渐近线不存在(存在一条斜渐近线)。
解题步骤 4
求 和 。
解题步骤 5
因为 ,所以没有水平渐近线。
不存在水平渐近线
解题步骤 6
解题步骤 6.1
化简表达式。
解题步骤 6.1.1
从 中分解出因数 。
解题步骤 6.1.1.1
从 中分解出因数 。
解题步骤 6.1.1.2
从 中分解出因数 。
解题步骤 6.1.1.3
从 中分解出因数 。
解题步骤 6.1.2
约去 和 的公因数。
解题步骤 6.1.2.1
从 中分解出因数 。
解题步骤 6.1.2.2
将 重写为 。
解题步骤 6.1.2.3
从 中分解出因数 。
解题步骤 6.1.2.4
约去公因数。
解题步骤 6.1.2.5
用 除以 。
解题步骤 6.1.3
化简表达式。
解题步骤 6.1.3.1
将 移到 的左侧。
解题步骤 6.1.3.2
将 重写为 。
解题步骤 6.2
由于进行多项式除法后没有多项式部分剩余,所以不存在斜渐近线。
不存在斜渐近线
不存在斜渐近线
解题步骤 7
这是所有渐近线的集合。
不存在垂直渐近线
不存在水平渐近线
不存在斜渐近线
解题步骤 8