输入问题...
初级微积分 示例
解题步骤 1
解题步骤 1.1
使 。用 代入替换所有出现的 。
解题步骤 1.2
从 中分解出因数 。
解题步骤 1.2.1
从 中分解出因数 。
解题步骤 1.2.2
从 中分解出因数 。
解题步骤 1.2.3
从 中分解出因数 。
解题步骤 1.3
使用 替换所有出现的 。
解题步骤 2
如果等式左侧的任一因数等于 ,则整个表达式将等于 。
解题步骤 3
解题步骤 3.1
将 设为等于 。
解题步骤 3.2
正割函数的值域为 和 。因为 不在该值域内,所以无解。
无解
无解
解题步骤 4
解题步骤 4.1
将 设为等于 。
解题步骤 4.2
求解 的 。
解题步骤 4.2.1
在等式两边都加上 。
解题步骤 4.2.2
对方程两边取反正割以便从正割中提出 。
解题步骤 4.2.3
化简右边。
解题步骤 4.2.3.1
计算 。
解题步骤 4.2.4
正割函数在第一象限和第斯象限为负。要求第二个解,应从 中减去参考角以求第四象限中的解。
解题步骤 4.2.5
求解 。
解题步骤 4.2.5.1
去掉圆括号。
解题步骤 4.2.5.2
化简 。
解题步骤 4.2.5.2.1
将 乘以 。
解题步骤 4.2.5.2.2
从 中减去 。
解题步骤 4.2.6
求 的周期。
解题步骤 4.2.6.1
函数的周期可利用 进行计算。
解题步骤 4.2.6.2
使用周期公式中的 替换 。
解题步骤 4.2.6.3
绝对值就是一个数和零之间的距离。 和 之间的距离为 。
解题步骤 4.2.6.4
用 除以 。
解题步骤 4.2.7
函数的周期为 ,所以函数值在两个方向上每隔 弧度将重复出现。
,对于任意整数
,对于任意整数
,对于任意整数
解题步骤 5
最终解为使 成立的所有值。
,对于任意整数