输入问题...
初级微积分 示例
,
解题步骤 1
从等式两边同时减去 。
解题步骤 2
解题步骤 2.1
使用 替换 中所有出现的 .
解题步骤 2.2
化简左边。
解题步骤 2.2.1
将 和 相加。
解题步骤 3
解题步骤 3.1
从等式两边同时减去 。
解题步骤 3.2
对方程左边进行因式分解。
解题步骤 3.2.1
从 中分解出因数 。
解题步骤 3.2.1.1
从 中分解出因数 。
解题步骤 3.2.1.2
从 中分解出因数 。
解题步骤 3.2.1.3
将 重写为 。
解题步骤 3.2.1.4
从 中分解出因数 。
解题步骤 3.2.1.5
从 中分解出因数 。
解题步骤 3.2.2
使用完全平方法则进行因式分解。
解题步骤 3.2.2.1
将 重写为 。
解题步骤 3.2.2.2
请检查中间项是否为第一项被平方数和第三项被平方数的乘积的两倍。
解题步骤 3.2.2.3
重写多项式。
解题步骤 3.2.2.4
使用完全平方三项式法则对 进行因式分解,其中 和 。
解题步骤 3.3
将 中的每一项除以 并化简。
解题步骤 3.3.1
将 中的每一项都除以 。
解题步骤 3.3.2
化简左边。
解题步骤 3.3.2.1
将两个负数相除得到一个正数。
解题步骤 3.3.2.2
用 除以 。
解题步骤 3.3.3
化简右边。
解题步骤 3.3.3.1
用 除以 。
解题步骤 3.4
将 设为等于 。
解题步骤 3.5
在等式两边都加上 。
解题步骤 4
解题步骤 4.1
使用 替换 中所有出现的 .
解题步骤 4.2
化简右边。
解题步骤 4.2.1
化简 。
解题步骤 4.2.1.1
化简每一项。
解题步骤 4.2.1.1.1
将 乘以 。
解题步骤 4.2.1.1.2
对 进行 次方运算。
解题步骤 4.2.1.1.3
将 乘以 。
解题步骤 4.2.1.2
从 中减去 。
解题步骤 5
方程组的解是一组完整的有序对,并且它们都是有效解。
解题步骤 6
结果可以多种形式表示。
点形式:
方程形式:
解题步骤 7