输入问题...
初级微积分 示例
解题步骤 1
重新组合项。
解题步骤 2
解题步骤 2.1
从 中分解出因数 。
解题步骤 2.2
从 中分解出因数 。
解题步骤 2.3
从 中分解出因数 。
解题步骤 3
将 重写为 。
解题步骤 4
使 。用 代入替换所有出现的 。
解题步骤 5
解题步骤 5.1
对于 形式的多项式,将其中间项重写为两项之和,这两项的乘积为 并且它们的和为 。
解题步骤 5.1.1
从 中分解出因数 。
解题步骤 5.1.2
把 重写为 加
解题步骤 5.1.3
运用分配律。
解题步骤 5.2
从每组中因式分解出最大公因数。
解题步骤 5.2.1
将首两项和最后两项分成两组。
解题步骤 5.2.2
从每组中因式分解出最大公因数 (GCF)。
解题步骤 5.3
通过因式分解出最大公因数 来因式分解多项式。
解题步骤 6
使用 替换所有出现的 。
解题步骤 7
解题步骤 7.1
从 中分解出因数 。
解题步骤 7.2
从 中分解出因数 。
解题步骤 7.3
从 中分解出因数 。
解题步骤 8
使 。用 代入替换所有出现的 。
解题步骤 9
解题步骤 9.1
重新排序项。
解题步骤 9.2
对于 形式的多项式,将其中间项重写为两项之和,这两项的乘积为 并且它们的和为 。
解题步骤 9.2.1
从 中分解出因数 。
解题步骤 9.2.2
把 重写为 加
解题步骤 9.2.3
运用分配律。
解题步骤 9.2.4
将 乘以 。
解题步骤 9.3
从每组中因式分解出最大公因数。
解题步骤 9.3.1
将首两项和最后两项分成两组。
解题步骤 9.3.2
从每组中因式分解出最大公因数 (GCF)。
解题步骤 9.4
通过因式分解出最大公因数 来因式分解多项式。
解题步骤 10
解题步骤 10.1
使用 替换所有出现的 。
解题步骤 10.2
去掉多余的括号。