输入问题...
初级微积分 示例
解题步骤 1
解题步骤 1.1
求一列数值的最小公分母 (LCD) 等同于求这些数值的分母的最小公倍数 (LCM)。
解题步骤 1.2
最小公倍数是能被所有数整除的最小正数。
1. 列出每个数的质因数。
2. 将每个因数乘以它在任一数字中出现的最大次数。
解题步骤 1.3
该数 不是一个质数,因为它只有一个正因数,即其本身。
非质数
解题步骤 1.4
的质因数是 。
解题步骤 1.4.1
具有因式 和 。
解题步骤 1.4.2
具有因式 和 。
解题步骤 1.5
乘以 。
解题步骤 1.5.1
将 乘以 。
解题步骤 1.5.2
将 乘以 。
解题步骤 1.6
的因式是 本身。
出现了 次。
解题步骤 1.7
的因式是 本身。
出现了 次。
解题步骤 1.8
的最小公倍数为在任一项中出现次数最多的所有因数的乘积。
解题步骤 1.9
某些数的最小公倍数 是这些均为其因数的最小数。
解题步骤 2
解题步骤 2.1
将 中的每一项乘以 。
解题步骤 2.2
化简左边。
解题步骤 2.2.1
化简每一项。
解题步骤 2.2.1.1
使用乘法的交换性质重写。
解题步骤 2.2.1.2
组合 和 。
解题步骤 2.2.1.3
约去 的公因数。
解题步骤 2.2.1.3.1
约去公因数。
解题步骤 2.2.1.3.2
重写表达式。
解题步骤 2.2.1.4
运用分配律。
解题步骤 2.2.1.5
将 乘以 。
解题步骤 2.2.1.6
约去 的公因数。
解题步骤 2.2.1.6.1
将 中前置负号移到分子中。
解题步骤 2.2.1.6.2
从 中分解出因数 。
解题步骤 2.2.1.6.3
约去公因数。
解题步骤 2.2.1.6.4
重写表达式。
解题步骤 2.2.1.7
将 乘以 。
解题步骤 2.2.1.8
运用分配律。
解题步骤 2.2.1.9
将 乘以 。
解题步骤 2.2.2
通过加上各项进行化简。
解题步骤 2.2.2.1
合并 中相反的项。
解题步骤 2.2.2.1.1
从 中减去 。
解题步骤 2.2.2.1.2
将 和 相加。
解题步骤 2.2.2.2
从 中减去 。
解题步骤 2.3
化简右边。
解题步骤 2.3.1
约去 的公因数。
解题步骤 2.3.1.1
从 中分解出因数 。
解题步骤 2.3.1.2
约去公因数。
解题步骤 2.3.1.3
重写表达式。
解题步骤 2.3.2
使用 FOIL 方法展开 。
解题步骤 2.3.2.1
运用分配律。
解题步骤 2.3.2.2
运用分配律。
解题步骤 2.3.2.3
运用分配律。
解题步骤 2.3.3
化简并合并同类项。
解题步骤 2.3.3.1
化简每一项。
解题步骤 2.3.3.1.1
将 乘以 。
解题步骤 2.3.3.1.2
将 移到 的左侧。
解题步骤 2.3.3.1.3
将 乘以 。
解题步骤 2.3.3.2
将 和 相加。
解题步骤 3
解题步骤 3.1
将方程重写为 。
解题步骤 3.2
从等式两边同时减去 。
解题步骤 3.3
从 中减去 。
解题步骤 3.4
使用 AC 法来对 进行因式分解。
解题步骤 3.4.1
思考一下 这种形式。找出一对整数,其积为 ,且和为 。在本例中,其积即为 ,和为 。
解题步骤 3.4.2
使用这些整数书写分数形式。
解题步骤 3.5
如果等式左侧的任一因数等于 ,则整个表达式将等于 。
解题步骤 3.6
将 设为等于 并求解 。
解题步骤 3.6.1
将 设为等于 。
解题步骤 3.6.2
从等式两边同时减去 。
解题步骤 3.7
将 设为等于 并求解 。
解题步骤 3.7.1
将 设为等于 。
解题步骤 3.7.2
从等式两边同时减去 。
解题步骤 3.8
最终解为使 成立的所有值。