输入问题...
初级微积分 示例
解题步骤 1
将 的分母设为等于 ,以求使表达式无意义的区间。
解题步骤 2
解题步骤 2.1
从 中分解出因数 。
解题步骤 2.1.1
从 中分解出因数 。
解题步骤 2.1.2
从 中分解出因数 。
解题步骤 2.1.3
从 中分解出因数 。
解题步骤 2.1.4
从 中分解出因数 。
解题步骤 2.1.5
从 中分解出因数 。
解题步骤 2.2
因数。
解题步骤 2.2.1
使用 AC 法来对 进行因式分解。
解题步骤 2.2.1.1
思考一下 这种形式。找出一对整数,其积为 ,且和为 。在本例中,其积即为 ,和为 。
解题步骤 2.2.1.2
使用这些整数书写分数形式。
解题步骤 2.2.2
去掉多余的括号。
解题步骤 2.3
将 中的每一项除以 并化简。
解题步骤 2.3.1
将 中的每一项都除以 。
解题步骤 2.3.2
化简左边。
解题步骤 2.3.2.1
约去 的公因数。
解题步骤 2.3.2.1.1
约去公因数。
解题步骤 2.3.2.1.2
重写表达式。
解题步骤 2.3.2.2
约去 的公因数。
解题步骤 2.3.2.2.1
约去公因数。
解题步骤 2.3.2.2.2
重写表达式。
解题步骤 2.3.2.3
约去 的公因数。
解题步骤 2.3.2.3.1
约去公因数。
解题步骤 2.3.2.3.2
用 除以 。
解题步骤 2.3.3
化简右边。
解题步骤 2.3.3.1
约去 和 的公因数。
解题步骤 2.3.3.1.1
从 中分解出因数 。
解题步骤 2.3.3.1.2
约去公因数。
解题步骤 2.3.3.1.2.1
从 中分解出因数 。
解题步骤 2.3.3.1.2.2
约去公因数。
解题步骤 2.3.3.1.2.3
重写表达式。
解题步骤 2.3.3.2
用 除以 。
解题步骤 3
定义域为使表达式有定义的所有值 。
区间计数法:
集合符号: