线性代数 示例

使用逆矩阵求解 25x+30y+30z=1475 , 50x+30y+20z=990 , 75x+30y+20z=810
25x+30y+30z=147525x+30y+30z=1475 , 50x+30y+20z=99050x+30y+20z=990 , 75x+30y+20z=81075x+30y+20z=810
解题步骤 1
从方程组中求 AX=BAX=B
[253030503020753020][xyz]=[1475990810]253030503020753020xyz=1475990810
解题步骤 2
求系数矩阵的逆矩阵。
点击获取更多步骤...
解题步骤 2.1
Find the determinant.
点击获取更多步骤...
解题步骤 2.1.1
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in row 11 by its cofactor and add.
点击获取更多步骤...
解题步骤 2.1.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣ ∣+++++∣ ∣
解题步骤 2.1.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
解题步骤 2.1.1.3
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|30203020|30203020
解题步骤 2.1.1.4
Multiply element a11a11 by its cofactor.
25|30203020|2530203020
解题步骤 2.1.1.5
The minor for a12a12 is the determinant with row 11 and column 22 deleted.
|50207520|50207520
解题步骤 2.1.1.6
Multiply element a12a12 by its cofactor.
-30|50207520|3050207520
解题步骤 2.1.1.7
The minor for a13a13 is the determinant with row 11 and column 33 deleted.
|50307530|50307530
解题步骤 2.1.1.8
Multiply element a13a13 by its cofactor.
30|50307530|3050307530
解题步骤 2.1.1.9
Add the terms together.
25|30203020|-30|50207520|+30|50307530|25302030203050207520+3050307530
25|30203020|-30|50207520|+30|50307530|25302030203050207520+3050307530
解题步骤 2.1.2
计算 |30203020|30203020
点击获取更多步骤...
解题步骤 2.1.2.1
可以使用公式 |abcd|=ad-cbabcd=adcb2×22×2 矩阵的行列式。
25(3020-3020)-30|50207520|+30|50307530|25(30203020)3050207520+3050307530
解题步骤 2.1.2.2
化简行列式。
点击获取更多步骤...
解题步骤 2.1.2.2.1
化简每一项。
点击获取更多步骤...
解题步骤 2.1.2.2.1.1
3030 乘以 2020
25(600-3020)-30|50207520|+30|50307530|25(6003020)3050207520+3050307530
解题步骤 2.1.2.2.1.2
-3030 乘以 2020
25(600-600)-30|50207520|+30|50307530|25(600600)3050207520+3050307530
25(600-600)-30|50207520|+30|50307530|25(600600)3050207520+3050307530
解题步骤 2.1.2.2.2
600600 中减去 600600
250-30|50207520|+30|50307530|2503050207520+3050307530
250-30|50207520|+30|50307530|2503050207520+3050307530
250-30|50207520|+30|50307530|2503050207520+3050307530
解题步骤 2.1.3
计算 |50207520|50207520
点击获取更多步骤...
解题步骤 2.1.3.1
可以使用公式 |abcd|=ad-cbabcd=adcb2×22×2 矩阵的行列式。
250-30(5020-7520)+30|50307530|25030(50207520)+3050307530
解题步骤 2.1.3.2
化简行列式。
点击获取更多步骤...
解题步骤 2.1.3.2.1
化简每一项。
点击获取更多步骤...
解题步骤 2.1.3.2.1.1
5050 乘以 2020
250-30(1000-7520)+30|50307530|25030(10007520)+3050307530
解题步骤 2.1.3.2.1.2
-7575 乘以 2020
250-30(1000-1500)+30|50307530|25030(10001500)+3050307530
250-30(1000-1500)+30|50307530|25030(10001500)+3050307530
解题步骤 2.1.3.2.2
10001000 中减去 15001500
250-30-500+30|50307530|25030500+3050307530
250-30-500+30|50307530|25030500+3050307530
250-30-500+30|50307530|25030500+3050307530
解题步骤 2.1.4
计算 |50307530|50307530
点击获取更多步骤...
解题步骤 2.1.4.1
可以使用公式 |abcd|=ad-cbabcd=adcb2×22×2 矩阵的行列式。
250-30-500+30(5030-7530)25030500+30(50307530)
解题步骤 2.1.4.2
化简行列式。
点击获取更多步骤...
解题步骤 2.1.4.2.1
化简每一项。
点击获取更多步骤...
解题步骤 2.1.4.2.1.1
5050 乘以 3030
250-30-500+30(1500-7530)25030500+30(15007530)
解题步骤 2.1.4.2.1.2
-7575 乘以 3030
250-30-500+30(1500-2250)25030500+30(15002250)
250-30-500+30(1500-2250)25030500+30(15002250)
解题步骤 2.1.4.2.2
15001500 中减去 22502250
250-30-500+30-75025030500+30750
250-30-500+30-75025030500+30750
250-30-500+30-75025030500+30750
解题步骤 2.1.5
化简行列式。
点击获取更多步骤...
解题步骤 2.1.5.1
化简每一项。
点击获取更多步骤...
解题步骤 2.1.5.1.1
2525 乘以 00
0-30-500+30-750030500+30750
解题步骤 2.1.5.1.2
-3030 乘以 -500500
0+15000+30-7500+15000+30750
解题步骤 2.1.5.1.3
3030 乘以 -750750
0+15000-225000+1500022500
0+15000-225000+1500022500
解题步骤 2.1.5.2
001500015000 相加。
15000-225001500022500
解题步骤 2.1.5.3
1500015000 中减去 2250022500
-75007500
-75007500
-75007500
解题步骤 2.2
Since the determinant is non-zero, the inverse exists.
解题步骤 2.3
Set up a 3×63×6 matrix where the left half is the original matrix and the right half is its identity matrix.
[253030100503020010753020001]253030100503020010753020001
解题步骤 2.4
求行简化阶梯形矩阵。
点击获取更多步骤...
解题步骤 2.4.1
Multiply each element of R1R1 by 125125 to make the entry at 1,11,1 a 11.
点击获取更多步骤...
解题步骤 2.4.1.1
Multiply each element of R1R1 by 125125 to make the entry at 1,11,1 a 11.
[252530253025125025025503020010753020001]⎢ ⎢252530253025125025025503020010753020001⎥ ⎥
解题步骤 2.4.1.2
化简 R1R1
[1656512500503020010753020001]⎢ ⎢1656512500503020010753020001⎥ ⎥
[1656512500503020010753020001]⎢ ⎢1656512500503020010753020001⎥ ⎥
解题步骤 2.4.2
Perform the row operation R2=R2-50R1R2=R250R1 to make the entry at 2,12,1 a 00.
点击获取更多步骤...
解题步骤 2.4.2.1
Perform the row operation R2=R2-50R1R2=R250R1 to make the entry at 2,12,1 a 00.
[165651250050-50130-50(65)20-50(65)0-50(125)1-5000-500753020001]⎢ ⎢ ⎢1656512500505013050(65)2050(65)050(125)15000500753020001⎥ ⎥ ⎥
解题步骤 2.4.2.2
化简 R2R2
[16565125000-30-40-210753020001]⎢ ⎢165651250003040210753020001⎥ ⎥
[16565125000-30-40-210753020001]⎢ ⎢165651250003040210753020001⎥ ⎥
解题步骤 2.4.3
Perform the row operation R3=R3-75R1R3=R375R1 to make the entry at 3,13,1 a 00.
点击获取更多步骤...
解题步骤 2.4.3.1
Perform the row operation R3=R3-75R1R3=R375R1 to make the entry at 3,13,1 a 00.
[16565125000-30-40-21075-75130-75(65)20-75(65)0-75(125)0-7501-750]⎢ ⎢ ⎢165651250003040210757513075(65)2075(65)075(125)07501750⎥ ⎥ ⎥
解题步骤 2.4.3.2
化简 R3R3
[16565125000-30-40-2100-60-70-301]⎢ ⎢16565125000304021006070301⎥ ⎥
[16565125000-30-40-2100-60-70-301]⎢ ⎢16565125000304021006070301⎥ ⎥
解题步骤 2.4.4
Multiply each element of R2R2 by -130130 to make the entry at 2,22,2 a 11.
点击获取更多步骤...
解题步骤 2.4.4.1
Multiply each element of R2R2 by -130130 to make the entry at 2,22,2 a 11.
[1656512500-1300-130-30-130-40-130-2-1301-13000-60-70-301]⎢ ⎢16565125001300130301304013021301130006070301⎥ ⎥
解题步骤 2.4.4.2
化简 R2R2
[16565125000143115-13000-60-70-301]⎢ ⎢16565125000143115130006070301⎥ ⎥
[16565125000143115-13000-60-70-301]⎢ ⎢16565125000143115130006070301⎥ ⎥
解题步骤 2.4.5
Perform the row operation R3=R3+60R2R3=R3+60R2 to make the entry at 3,23,2 a 00.
点击获取更多步骤...
解题步骤 2.4.5.1
Perform the row operation R3=R3+60R2R3=R3+60R2 to make the entry at 3,23,2 a 00.
[16565125000143115-13000+600-60+601-70+60(43)-3+60(115)0+60(-130)1+600]⎢ ⎢ ⎢ ⎢1656512500014311513000+60060+60170+60(43)3+60(115)0+60(130)1+600⎥ ⎥ ⎥ ⎥
解题步骤 2.4.5.2
化简 R3R3
[16565125000143115-130000101-21]⎢ ⎢1656512500014311513000010121⎥ ⎥
[16565125000143115-130000101-21]⎢ ⎢1656512500014311513000010121⎥ ⎥
解题步骤 2.4.6
Multiply each element of R3R3 by 110110 to make the entry at 3,33,3 a 11.
点击获取更多步骤...
解题步骤 2.4.6.1
Multiply each element of R3R3 by 110110 to make the entry at 3,33,3 a 11.
[16565125000143115-13000100101010110-210110]⎢ ⎢ ⎢1656512500014311513000100101010110210110⎥ ⎥ ⎥
解题步骤 2.4.6.2
化简 R3R3
[16565125000143115-1300001110-15110]⎢ ⎢ ⎢16565125000143115130000111015110⎥ ⎥ ⎥
[16565125000143115-1300001110-15110]⎢ ⎢ ⎢16565125000143115130000111015110⎥ ⎥ ⎥
解题步骤 2.4.7
Perform the row operation R2=R2-43R3R2=R243R3 to make the entry at 2,32,3 a 00.
点击获取更多步骤...
解题步骤 2.4.7.1
Perform the row operation R2=R2-43R3R2=R243R3 to make the entry at 2,32,3 a 00.
[16565125000-4301-43043-431115-43110-130-43(-15)0-43110001110-15110]⎢ ⎢ ⎢ ⎢165651250004301430434311154311013043(15)04311000111015110⎥ ⎥ ⎥ ⎥
解题步骤 2.4.7.2
化简 R2
[1656512500010-115730-215001110-15110]
[1656512500010-115730-215001110-15110]
解题步骤 2.4.8
Perform the row operation R1=R1-65R3 to make the entry at 1,3 a 0.
点击获取更多步骤...
解题步骤 2.4.8.1
Perform the row operation R1=R1-65R3 to make the entry at 1,3 a 0.
[1-65065-65065-651125-651100-65(-15)0-65110010-115730-215001110-15110]
解题步骤 2.4.8.2
化简 R1
[1650-225625-325010-115730-215001110-15110]
[1650-225625-325010-115730-215001110-15110]
解题步骤 2.4.9
Perform the row operation R1=R1-65R2 to make the entry at 1,2 a 0.
点击获取更多步骤...
解题步骤 2.4.9.1
Perform the row operation R1=R1-65R2 to make the entry at 1,2 a 0.
[1-65065-6510-650-225-65(-115)625-65730-325-65(-215)010-115730-215001110-15110]
解题步骤 2.4.9.2
化简 R1
[1000-125125010-115730-215001110-15110]
[1000-125125010-115730-215001110-15110]
[1000-125125010-115730-215001110-15110]
解题步骤 2.5
The right half of the reduced row echelon form is the inverse.
[0-125125-115730-215110-15110]
[0-125125-115730-215110-15110]
解题步骤 3
对矩阵方程的两边同时左乘逆矩阵。
([0-125125-115730-215110-15110][253030503020753020])[xyz]=[0-125125-115730-215110-15110][1475990810]
解题步骤 4
任何矩阵与其逆矩阵的乘积始终等于 1AA-1=1
[xyz]=[0-125125-115730-215110-15110][1475990810]
解题步骤 5
乘以 [0-125125-115730-215110-15110][1475990810]
点击获取更多步骤...
解题步骤 5.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is 3×3 and the second matrix is 3×1.
解题步骤 5.2
将第一个矩阵中的每一行乘以第二个矩阵中的每一列。
[01475-125990+125810-1151475+730990-2158101101475-15990+110810]
解题步骤 5.3
通过展开所有表达式化简矩阵的每一个元素。
[-365743612]
[-365743612]
解题步骤 6
化简左右两边。
[xyz]=[-365743612]
解题步骤 7
求解。
x=-365
y=743
z=612
 [x2  12  π  xdx ]