线性代数 示例

求出合成矩阵的逆矩阵 [[1,7,1],[2,9,0],[1,8,1]][[4.5,0.5,-4.5],[-1,0,1],[3.5,-0.5,-2.5]]
解题步骤 1
乘以
点击获取更多步骤...
解题步骤 1.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is and the second matrix is .
解题步骤 1.2
将第一个矩阵中的每一行乘以第二个矩阵中的每一列。
解题步骤 1.3
通过展开所有表达式化简矩阵的每一个元素。
解题步骤 2
Find the determinant.
点击获取更多步骤...
解题步骤 2.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
点击获取更多步骤...
解题步骤 2.1.1
Consider the corresponding sign chart.
解题步骤 2.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
解题步骤 2.1.3
The minor for is the determinant with row and column deleted.
解题步骤 2.1.4
Multiply element by its cofactor.
解题步骤 2.1.5
The minor for is the determinant with row and column deleted.
解题步骤 2.1.6
Multiply element by its cofactor.
解题步骤 2.1.7
The minor for is the determinant with row and column deleted.
解题步骤 2.1.8
Multiply element by its cofactor.
解题步骤 2.1.9
Add the terms together.
解题步骤 2.2
乘以
解题步骤 2.3
乘以
解题步骤 2.4
计算
点击获取更多步骤...
解题步骤 2.4.1
可以使用公式 矩阵的行列式。
解题步骤 2.4.2
化简行列式。
点击获取更多步骤...
解题步骤 2.4.2.1
化简每一项。
点击获取更多步骤...
解题步骤 2.4.2.1.1
乘以
解题步骤 2.4.2.1.2
乘以
解题步骤 2.4.2.2
相加。
解题步骤 2.5
化简行列式。
点击获取更多步骤...
解题步骤 2.5.1
乘以
解题步骤 2.5.2
相加。
解题步骤 2.5.3
相加。
解题步骤 3
Since the determinant is non-zero, the inverse exists.
解题步骤 4
Set up a matrix where the left half is the original matrix and the right half is its identity matrix.
解题步骤 5
The right half of the reduced row echelon form is the inverse.