线性代数 示例

求定义域 4x 2x 的平方根 3x 的立方根
解题步骤 1
的被开方数设为大于或等于 ,以求使表达式有意义的区间。
解题步骤 2
求解
点击获取更多步骤...
解题步骤 2.1
To remove the radical on the left side of the inequality, cube both sides of the inequality.
解题步骤 2.2
化简不等式的两边。
点击获取更多步骤...
解题步骤 2.2.1
使用 ,将 重写成
解题步骤 2.2.2
化简左边。
点击获取更多步骤...
解题步骤 2.2.2.1
化简
点击获取更多步骤...
解题步骤 2.2.2.1.1
运用乘积法则。
解题步骤 2.2.2.1.2
使用乘法的交换性质重写。
解题步骤 2.2.2.1.3
通过指数相加将 乘以
点击获取更多步骤...
解题步骤 2.2.2.1.3.1
移动
解题步骤 2.2.2.1.3.2
乘以
点击获取更多步骤...
解题步骤 2.2.2.1.3.2.1
进行 次方运算。
解题步骤 2.2.2.1.3.2.2
使用幂法则 合并指数。
解题步骤 2.2.2.1.3.3
写成具有公分母的分数。
解题步骤 2.2.2.1.3.4
在公分母上合并分子。
解题步骤 2.2.2.1.3.5
相加。
解题步骤 2.2.2.1.4
使用幂法则 分解指数。
点击获取更多步骤...
解题步骤 2.2.2.1.4.1
运用乘积法则。
解题步骤 2.2.2.1.4.2
运用乘积法则。
解题步骤 2.2.2.1.5
进行 次方运算。
解题步骤 2.2.2.1.6
中的指数相乘。
点击获取更多步骤...
解题步骤 2.2.2.1.6.1
运用幂法则并将指数相乘,
解题步骤 2.2.2.1.6.2
约去 的公因数。
点击获取更多步骤...
解题步骤 2.2.2.1.6.2.1
约去公因数。
解题步骤 2.2.2.1.6.2.2
重写表达式。
解题步骤 2.2.2.1.7
计算指数。
解题步骤 2.2.2.1.8
乘以
解题步骤 2.2.2.1.9
中的指数相乘。
点击获取更多步骤...
解题步骤 2.2.2.1.9.1
运用幂法则并将指数相乘,
解题步骤 2.2.2.1.9.2
约去 的公因数。
点击获取更多步骤...
解题步骤 2.2.2.1.9.2.1
约去公因数。
解题步骤 2.2.2.1.9.2.2
重写表达式。
解题步骤 2.2.3
化简右边。
点击获取更多步骤...
解题步骤 2.2.3.1
进行任意正数次方的运算均得到
解题步骤 2.3
求解
点击获取更多步骤...
解题步骤 2.3.1
中的每一项除以 并化简。
点击获取更多步骤...
解题步骤 2.3.1.1
中的每一项都除以
解题步骤 2.3.1.2
化简左边。
点击获取更多步骤...
解题步骤 2.3.1.2.1
约去 的公因数。
点击获取更多步骤...
解题步骤 2.3.1.2.1.1
约去公因数。
解题步骤 2.3.1.2.1.2
除以
解题步骤 2.3.1.3
化简右边。
点击获取更多步骤...
解题步骤 2.3.1.3.1
除以
解题步骤 2.3.2
因为左边为偶次幂,所以对所有实数都为正。
所有实数
所有实数
所有实数
解题步骤 3
定义域为全体实数。
区间计数法:
集合符号:
解题步骤 4