线性代数 示例

求出反函数 [[10,9],[-6,-5]]
[109-6-5]
解题步骤 1
The inverse of a 2×2 matrix can be found using the formula 1ad-bc[d-b-ca] where ad-bc is the determinant.
解题步骤 2
Find the determinant.
点击获取更多步骤...
解题步骤 2.1
可以使用公式 |abcd|=ad-cb2×2 矩阵的行列式。
10-5-(-69)
解题步骤 2.2
化简行列式。
点击获取更多步骤...
解题步骤 2.2.1
化简每一项。
点击获取更多步骤...
解题步骤 2.2.1.1
10 乘以 -5
-50-(-69)
解题步骤 2.2.1.2
乘以 -(-69)
点击获取更多步骤...
解题步骤 2.2.1.2.1
-6 乘以 9
-50--54
解题步骤 2.2.1.2.2
-1 乘以 -54
-50+54
-50+54
-50+54
解题步骤 2.2.2
-5054 相加。
4
4
4
解题步骤 3
Since the determinant is non-zero, the inverse exists.
解题步骤 4
Substitute the known values into the formula for the inverse.
14[-5-9610]
解题步骤 5
14 乘以矩阵中的每一个元素。
[14-514-91461410]
解题步骤 6
化简矩阵中的每一个元素。
点击获取更多步骤...
解题步骤 6.1
组合 14-5
[-5414-91461410]
解题步骤 6.2
将负号移到分数的前面。
[-5414-91461410]
解题步骤 6.3
组合 14-9
[-54-941461410]
解题步骤 6.4
将负号移到分数的前面。
[-54-941461410]
解题步骤 6.5
约去 2 的公因数。
点击获取更多步骤...
解题步骤 6.5.1
4 中分解出因数 2
[-54-9412(2)61410]
解题步骤 6.5.2
6 中分解出因数 2
[-54-94122(23)1410]
解题步骤 6.5.3
约去公因数。
[-54-94122(23)1410]
解题步骤 6.5.4
重写表达式。
[-54-941231410]
[-54-941231410]
解题步骤 6.6
组合 123
[-54-94321410]
解题步骤 6.7
约去 2 的公因数。
点击获取更多步骤...
解题步骤 6.7.1
4 中分解出因数 2
[-54-943212(2)10]
解题步骤 6.7.2
10 中分解出因数 2
[-54-9432122(25)]
解题步骤 6.7.3
约去公因数。
[-54-9432122(25)]
解题步骤 6.7.4
重写表达式。
[-54-9432125]
[-54-9432125]
解题步骤 6.8
组合 125
[-54-943252]
[-54-943252]
 [x2  12  π  xdx ]