线性代数 示例

求出幂集 A=(1,2,3,4,5,6)
A=(1,2,3,4,5,6)
解题步骤 1
一个集合 S 的幂集就是 S 所有子集的集合。第一个子集就是集合 S 本身。接着,求出包含的少一个元素的所有子集(在本例中即 5 个元素)。继续这一过程,直至求出包含空集在内的所有子集。
幂集 = {{1,2,3,4,5,6},{1,2,3,4,5},{1,2,3,4,6},{1,2,3,5,6},{1,2,4,5,6},{1,3,4,5,6},{2,3,4,5,6},{1,2,3,4},{1,2,3,5},{1,2,3,6},{1,2,4,5},{1,2,4,6},{1,2,5,6},{1,3,4,5},{1,3,4,6},{1,3,5,6},{1,4,5,6},{2,3,4,5},{2,3,4,6},{2,3,5,6},{2,4,5,6},{3,4,5,6},{1,2,3},{1,2,4},{1,2,5},{1,2,6},{1,3,4},{1,3,5},{1,3,6},{1,4,5},{1,4,6},{1,5,6},{2,3,4},{2,3,5},{2,3,6},{2,4,5},{2,4,6},{2,5,6},{3,4,5},{3,4,6},{3,5,6},{4,5,6},{1,2},{1,3},{1,4},{1,5},{1,6},{2,3},{2,4},{2,5},{2,6},{3,4},{3,5},{3,6},{4,5},{4,6},{5,6},{1},{2},{3},{4},{5},{6},{}}
 [x2  12  π  xdx ]