有限数学 示例

判断是否为线性 f(x)=x/( x^2-1) 的立方根
f(x)=x3x2-1f(x)=x3x21
解题步骤 1
化简 f(x)f(x)
点击获取更多步骤...
解题步骤 1.1
化简分母。
点击获取更多步骤...
解题步骤 1.1.1
11 重写为 1212
f(x)=x3x2-12f(x)=x3x212
解题步骤 1.1.2
因为两项都是完全平方数,所以使用平方差公式 a2-b2=(a+b)(a-b)a2b2=(a+b)(ab) 进行因式分解,其中 a=xa=xb=1b=1
f(x)=x3(x+1)(x-1)f(x)=x3(x+1)(x1)
f(x)=x3(x+1)(x-1)f(x)=x3(x+1)(x1)
解题步骤 1.2
x3(x+1)(x-1)x3(x+1)(x1) 乘以 3(x+1)(x-1)23(x+1)(x-1)23(x+1)(x1)23(x+1)(x1)2
f(x)=x3(x+1)(x-1)3(x+1)(x-1)23(x+1)(x-1)2f(x)=x3(x+1)(x1)3(x+1)(x1)23(x+1)(x1)2
解题步骤 1.3
合并和化简分母。
点击获取更多步骤...
解题步骤 1.3.1
x3(x+1)(x-1)x3(x+1)(x1) 乘以 3(x+1)(x-1)23(x+1)(x-1)23(x+1)(x1)23(x+1)(x1)2
f(x)=x3(x+1)(x-1)23(x+1)(x-1)3(x+1)(x-1)2f(x)=x3(x+1)(x1)23(x+1)(x1)3(x+1)(x1)2
解题步骤 1.3.2
3(x+1)(x-1)3(x+1)(x1) 进行 11 次方运算。
f(x)=x3(x+1)(x-1)23(x+1)(x-1)3(x+1)(x-1)2f(x)=x3(x+1)(x1)23(x+1)(x1)3(x+1)(x1)2
解题步骤 1.3.3
使用幂法则 aman=am+naman=am+n 合并指数。
f(x)=x3(x+1)(x-1)23(x+1)(x-1)1+2f(x)=x3(x+1)(x1)23(x+1)(x1)1+2
解题步骤 1.3.4
1122 相加。
f(x)=x3(x+1)(x-1)23(x+1)(x-1)3f(x)=x3(x+1)(x1)23(x+1)(x1)3
解题步骤 1.3.5
3(x+1)(x-1)33(x+1)(x1)3 重写为 (x+1)(x-1)(x+1)(x1)
点击获取更多步骤...
解题步骤 1.3.5.1
使用 nax=axnnax=axn,将3(x+1)(x-1)3(x+1)(x1) 重写成 ((x+1)(x-1))13((x+1)(x1))13
f(x)=x3(x+1)(x-1)2(((x+1)(x-1))13)3f(x)=x3(x+1)(x1)2(((x+1)(x1))13)3
解题步骤 1.3.5.2
运用幂法则并将指数相乘,(am)n=amn(am)n=amn
f(x)=x3(x+1)(x-1)2((x+1)(x-1))133f(x)=x3(x+1)(x1)2((x+1)(x1))133
解题步骤 1.3.5.3
组合 131333
f(x)=x3(x+1)(x-1)2((x+1)(x-1))33f(x)=x3(x+1)(x1)2((x+1)(x1))33
解题步骤 1.3.5.4
约去 33 的公因数。
点击获取更多步骤...
解题步骤 1.3.5.4.1
约去公因数。
f(x)=x3(x+1)(x-1)2((x+1)(x-1))33
解题步骤 1.3.5.4.2
重写表达式。
f(x)=x3(x+1)(x-1)2(x+1)(x-1)
f(x)=x3(x+1)(x-1)2(x+1)(x-1)
解题步骤 1.3.5.5
化简。
f(x)=x3(x+1)(x-1)2(x+1)(x-1)
f(x)=x3(x+1)(x-1)2(x+1)(x-1)
f(x)=x3(x+1)(x-1)2(x+1)(x-1)
解题步骤 1.4
化简分子。
点击获取更多步骤...
解题步骤 1.4.1
3(x+1)(x-1)2 重写为 3((x+1)(x-1))2
f(x)=x3((x+1)(x-1))2(x+1)(x-1)
解题步骤 1.4.2
(x+1)(x-1) 运用乘积法则。
f(x)=x3(x+1)2(x-1)2(x+1)(x-1)
f(x)=x3(x+1)2(x-1)2(x+1)(x-1)
f(x)=x3(x+1)2(x-1)2(x+1)(x-1)
解题步骤 2
The word linear is used for a straight line. A linear function is a function of a straight line, which means that the degree of a linear function must be 0 or 1. In this case, The degree of f(x)=x3(x+1)2(x-1)2(x+1)(x-1) is -1, which makes the function a nonlinear function.
f(x)=x3(x+1)2(x-1)2(x+1)(x-1) is not a linear function
 [x2  12  π  xdx ]