输入问题...
有限数学 示例
解题步骤 1
在等式两边都加上 。
解题步骤 2
解题步骤 2.1
化简每一项。
解题步骤 2.1.1
将 重写为 。
解题步骤 2.1.2
使用 FOIL 方法展开 。
解题步骤 2.1.2.1
运用分配律。
解题步骤 2.1.2.2
运用分配律。
解题步骤 2.1.2.3
运用分配律。
解题步骤 2.1.3
化简并合并同类项。
解题步骤 2.1.3.1
化简每一项。
解题步骤 2.1.3.1.1
将 乘以 。
解题步骤 2.1.3.1.2
将 移到 的左侧。
解题步骤 2.1.3.1.3
将 乘以 。
解题步骤 2.1.3.2
从 中减去 。
解题步骤 2.2
将 和 相加。
解题步骤 3
使用二次公式求解。
解题步骤 4
将 、 和 的值代入二次公式中并求解 。
解题步骤 5
解题步骤 5.1
化简分子。
解题步骤 5.1.1
对 进行 次方运算。
解题步骤 5.1.2
乘以 。
解题步骤 5.1.2.1
将 乘以 。
解题步骤 5.1.2.2
将 乘以 。
解题步骤 5.1.3
从 中减去 。
解题步骤 5.1.4
将 重写为 。
解题步骤 5.1.5
将 重写为 。
解题步骤 5.1.6
将 重写为 。
解题步骤 5.1.7
将 重写为 。
解题步骤 5.1.8
假设各项均为正实数,从根式下提出各项。
解题步骤 5.1.9
将 移到 的左侧。
解题步骤 5.2
将 乘以 。
解题步骤 5.3
化简 。
解题步骤 6
解题步骤 6.1
化简分子。
解题步骤 6.1.1
对 进行 次方运算。
解题步骤 6.1.2
乘以 。
解题步骤 6.1.2.1
将 乘以 。
解题步骤 6.1.2.2
将 乘以 。
解题步骤 6.1.3
从 中减去 。
解题步骤 6.1.4
将 重写为 。
解题步骤 6.1.5
将 重写为 。
解题步骤 6.1.6
将 重写为 。
解题步骤 6.1.7
将 重写为 。
解题步骤 6.1.8
假设各项均为正实数,从根式下提出各项。
解题步骤 6.1.9
将 移到 的左侧。
解题步骤 6.2
将 乘以 。
解题步骤 6.3
化简 。
解题步骤 6.4
将 变换为 。
解题步骤 7
解题步骤 7.1
化简分子。
解题步骤 7.1.1
对 进行 次方运算。
解题步骤 7.1.2
乘以 。
解题步骤 7.1.2.1
将 乘以 。
解题步骤 7.1.2.2
将 乘以 。
解题步骤 7.1.3
从 中减去 。
解题步骤 7.1.4
将 重写为 。
解题步骤 7.1.5
将 重写为 。
解题步骤 7.1.6
将 重写为 。
解题步骤 7.1.7
将 重写为 。
解题步骤 7.1.8
假设各项均为正实数,从根式下提出各项。
解题步骤 7.1.9
将 移到 的左侧。
解题步骤 7.2
将 乘以 。
解题步骤 7.3
化简 。
解题步骤 7.4
将 变换为 。
解题步骤 8
最终答案为两个解的组合。