输入问题...
有限数学 示例
解题步骤 1
解题步骤 1.1
要求第一段的区间, 需找到绝对值内为非负的地方。
解题步骤 1.2
求解不等式。
解题步骤 1.2.1
在不等式两边同时加上 。
解题步骤 1.2.2
Take the specified root of both sides of the inequality to eliminate the exponent on the left side.
解题步骤 1.2.3
化简左边。
解题步骤 1.2.3.1
从根式下提出各项。
解题步骤 1.2.4
将 书写为分段式。
解题步骤 1.2.4.1
要求第一段的区间, 需找到绝对值内为非负的地方。
解题步骤 1.2.4.2
在 为非负数的地方,去掉绝对值。
解题步骤 1.2.4.3
要求第二段的区间, 需找到绝对值内为负的地方。
解题步骤 1.2.4.4
在 为负的地方,去掉绝对值符号并乘以 。
解题步骤 1.2.4.5
书写为分段式。
解题步骤 1.2.5
求 和 的交点。
解题步骤 1.2.6
将 中的每一项除以 并化简。
解题步骤 1.2.6.1
将 中的每一项除以 。当不等式两边同时乘以或除以一个负数时,应改变不等号的方向。
解题步骤 1.2.6.2
化简左边。
解题步骤 1.2.6.2.1
将两个负数相除得到一个正数。
解题步骤 1.2.6.2.2
用 除以 。
解题步骤 1.2.6.3
化简右边。
解题步骤 1.2.6.3.1
移动 中分母的负号。
解题步骤 1.2.6.3.2
将 重写为 。
解题步骤 1.2.7
求解的并集。
或
或
解题步骤 1.3
在 为非负数的地方,去掉绝对值。
解题步骤 1.4
要求第二段的区间, 需找到绝对值内为负的地方。
解题步骤 1.5
求解不等式。
解题步骤 1.5.1
在不等式两边同时加上 。
解题步骤 1.5.2
Take the specified root of both sides of the inequality to eliminate the exponent on the left side.
解题步骤 1.5.3
化简左边。
解题步骤 1.5.3.1
从根式下提出各项。
解题步骤 1.5.4
将 书写为分段式。
解题步骤 1.5.4.1
要求第一段的区间, 需找到绝对值内为非负的地方。
解题步骤 1.5.4.2
在 为非负数的地方,去掉绝对值。
解题步骤 1.5.4.3
要求第二段的区间, 需找到绝对值内为负的地方。
解题步骤 1.5.4.4
在 为负的地方,去掉绝对值符号并乘以 。
解题步骤 1.5.4.5
书写为分段式。
解题步骤 1.5.5
求 和 的交点。
解题步骤 1.5.6
当 时求解 。
解题步骤 1.5.6.1
将 中的每一项除以 并化简。
解题步骤 1.5.6.1.1
将 中的每一项除以 。当不等式两边同时乘以或除以一个负数时,应改变不等号的方向。
解题步骤 1.5.6.1.2
化简左边。
解题步骤 1.5.6.1.2.1
将两个负数相除得到一个正数。
解题步骤 1.5.6.1.2.2
用 除以 。
解题步骤 1.5.6.1.3
化简右边。
解题步骤 1.5.6.1.3.1
移动 中分母的负号。
解题步骤 1.5.6.1.3.2
将 重写为 。
解题步骤 1.5.6.2
求 和 的交点。
解题步骤 1.5.7
求解的并集。
解题步骤 1.6
在 为负的地方,去掉绝对值符号并乘以 。
解题步骤 1.7
书写为分段式。
解题步骤 1.8
化简 。
解题步骤 1.8.1
运用分配律。
解题步骤 1.8.2
将 乘以 。
解题步骤 2
解题步骤 2.1
求解 的 。
解题步骤 2.1.1
从不等式两边同时减去 。
解题步骤 2.1.2
把不等式转换成方程。
解题步骤 2.1.3
使用 AC 法来对 进行因式分解。
解题步骤 2.1.3.1
思考一下 这种形式。找出一对整数,其积为 ,且和为 。在本例中,其积即为 ,和为 。
解题步骤 2.1.3.2
使用这些整数书写分数形式。
解题步骤 2.1.4
如果等式左侧的任一因数等于 ,则整个表达式将等于 。
解题步骤 2.1.5
将 设为等于 并求解 。
解题步骤 2.1.5.1
将 设为等于 。
解题步骤 2.1.5.2
在等式两边都加上 。
解题步骤 2.1.6
将 设为等于 并求解 。
解题步骤 2.1.6.1
将 设为等于 。
解题步骤 2.1.6.2
从等式两边同时减去 。
解题步骤 2.1.7
最终解为使 成立的所有值。
解题步骤 2.1.8
使用每一个根建立验证区间。
解题步骤 2.1.9
从每个区间中选择一个测试值并将其代入原不等式中以判定哪些区间能满足不等式。
解题步骤 2.1.9.1
检验区间 上的值是否使不等式成立。
解题步骤 2.1.9.1.1
选择区间 上的一个值并查看该数值是否能使原不等式成立。
解题步骤 2.1.9.1.2
使用原不等式中的 替换 。
解题步骤 2.1.9.1.3
左边的 不小于右边的 ,即给定的命题是假命题。
False
False
解题步骤 2.1.9.2
检验区间 上的值是否使不等式成立。
解题步骤 2.1.9.2.1
选择区间 上的一个值并查看该数值是否能使原不等式成立。
解题步骤 2.1.9.2.2
使用原不等式中的 替换 。
解题步骤 2.1.9.2.3
左边的 小于右边的 ,即给定的命题恒为真命题。
True
True
解题步骤 2.1.9.3
检验区间 上的值是否使不等式成立。
解题步骤 2.1.9.3.1
选择区间 上的一个值并查看该数值是否能使原不等式成立。
解题步骤 2.1.9.3.2
使用原不等式中的 替换 。
解题步骤 2.1.9.3.3
左边的 不小于右边的 ,即给定的命题是假命题。
False
False
解题步骤 2.1.9.4
比较各区间以判定哪些区间能满足原不等式。
为假
为真
为假
为假
为真
为假
解题步骤 2.1.10
解由使等式成立的所有区间组成。
解题步骤 2.2
求 和 的交点。
解题步骤 3
解题步骤 3.1
求解 的 。
解题步骤 3.1.1
从不等式两边同时减去 。
解题步骤 3.1.2
把不等式转换成方程。
解题步骤 3.1.3
对方程左边进行因式分解。
解题步骤 3.1.3.1
从 中分解出因数 。
解题步骤 3.1.3.1.1
移动 。
解题步骤 3.1.3.1.2
从 中分解出因数 。
解题步骤 3.1.3.1.3
从 中分解出因数 。
解题步骤 3.1.3.1.4
将 重写为 。
解题步骤 3.1.3.1.5
从 中分解出因数 。
解题步骤 3.1.3.1.6
从 中分解出因数 。
解题步骤 3.1.3.2
因数。
解题步骤 3.1.3.2.1
使用 AC 法来对 进行因式分解。
解题步骤 3.1.3.2.1.1
思考一下 这种形式。找出一对整数,其积为 ,且和为 。在本例中,其积即为 ,和为 。
解题步骤 3.1.3.2.1.2
使用这些整数书写分数形式。
解题步骤 3.1.3.2.2
去掉多余的括号。
解题步骤 3.1.4
如果等式左侧的任一因数等于 ,则整个表达式将等于 。
解题步骤 3.1.5
将 设为等于 并求解 。
解题步骤 3.1.5.1
将 设为等于 。
解题步骤 3.1.5.2
在等式两边都加上 。
解题步骤 3.1.6
将 设为等于 并求解 。
解题步骤 3.1.6.1
将 设为等于 。
解题步骤 3.1.6.2
从等式两边同时减去 。
解题步骤 3.1.7
最终解为使 成立的所有值。
解题步骤 3.1.8
使用每一个根建立验证区间。
解题步骤 3.1.9
从每个区间中选择一个测试值并将其代入原不等式中以判定哪些区间能满足不等式。
解题步骤 3.1.9.1
检验区间 上的值是否使不等式成立。
解题步骤 3.1.9.1.1
选择区间 上的一个值并查看该数值是否能使原不等式成立。
解题步骤 3.1.9.1.2
使用原不等式中的 替换 。
解题步骤 3.1.9.1.3
左边的 小于右边的 ,即给定的命题恒为真命题。
True
True
解题步骤 3.1.9.2
检验区间 上的值是否使不等式成立。
解题步骤 3.1.9.2.1
选择区间 上的一个值并查看该数值是否能使原不等式成立。
解题步骤 3.1.9.2.2
使用原不等式中的 替换 。
解题步骤 3.1.9.2.3
左边的 不小于右边的 ,即给定的命题是假命题。
False
False
解题步骤 3.1.9.3
检验区间 上的值是否使不等式成立。
解题步骤 3.1.9.3.1
选择区间 上的一个值并查看该数值是否能使原不等式成立。
解题步骤 3.1.9.3.2
使用原不等式中的 替换 。
解题步骤 3.1.9.3.3
左边的 小于右边的 ,即给定的命题恒为真命题。
True
True
解题步骤 3.1.9.4
比较各区间以判定哪些区间能满足原不等式。
为真
为假
为真
为真
为假
为真
解题步骤 3.1.10
解由使等式成立的所有区间组成。
或
或
解题步骤 3.2
求 和 的交点。
解题步骤 4
求解的并集。
解题步骤 5
把不等式转换成区间计数法。
解题步骤 6