输入问题...
有限数学 示例
xy1.95-2.15192.15-2.35192.35-2.55172.55-2.75142.75-2.9592.95-3.1573.15-3.3543.35-3.5543.55-3.7533.75-3.951
解题步骤 1
求每一组的中点 M。
xyMidpoint(M)1.95-2.15192.052.15-2.35192.252.35-2.55172.452.55-2.75142.652.75-2.9592.852.95-3.1573.053.15-3.3543.253.35-3.5543.453.55-3.7533.653.75-3.9513.85
解题步骤 2
将每组频率乘以组中值。
xyMidpoint(M)f⋅M1.95-2.15192.0519⋅2.052.15-2.35192.2519⋅2.252.35-2.55172.4517⋅2.452.55-2.75142.6514⋅2.652.75-2.9592.859⋅2.852.95-3.1573.057⋅3.053.15-3.3543.254⋅3.253.35-3.5543.454⋅3.453.55-3.7533.653⋅3.653.75-3.9513.851⋅3.85
解题步骤 3
化简 f⋅M 列。
xyMidpoint(M)f⋅M1.95-2.15192.0538.94‾92.15-2.35192.2542.752.35-2.55172.4541.652.55-2.75142.6537.12.75-2.9592.8525.652.95-3.1573.0521.34‾93.15-3.3543.25133.35-3.5543.4513.83.55-3.7533.6510.953.75-3.9513.853.85
解题步骤 4
将 f⋅M 列中的值相加。
38.94‾9+42.75+41.65+37.1+25.65+21.34‾9+13+13.8+10.95+3.85=249.04‾9
解题步骤 5
将频率列中的值相加。
n=19+19+17+14+9+7+4+4+3+1=97
解题步骤 6
均值 (mu) 为 f⋅M 的和除以 n,即为频率的和。
μ=∑f⋅M∑f
解题步骤 7
平均值是中点和频率的乘积之和除以频率总和。
μ=249.04‾997
解题步骤 8
化简 μ=249.04‾997 的右边。
2.56752577