有限数学 示例

求频率表的平均值 table[[x,y],[1.95-2.15,19],[2.15-2.35,19],[2.35-2.55,17],[2.55-2.75,14],[2.75-2.95,9],[2.95-3.15,7],[3.15-3.35,4],[3.35-3.55,4],[3.55-3.75,3],[3.75-3.95,1]]
xy1.95-2.15192.15-2.35192.35-2.55172.55-2.75142.75-2.9592.95-3.1573.15-3.3543.35-3.5543.55-3.7533.75-3.951
解题步骤 1
求每一组的中点 M
xyMidpoint(M)1.95-2.15192.052.15-2.35192.252.35-2.55172.452.55-2.75142.652.75-2.9592.852.95-3.1573.053.15-3.3543.253.35-3.5543.453.55-3.7533.653.75-3.9513.85
解题步骤 2
将每组频率乘以组中值。
xyMidpoint(M)fM1.95-2.15192.05192.052.15-2.35192.25192.252.35-2.55172.45172.452.55-2.75142.65142.652.75-2.9592.8592.852.95-3.1573.0573.053.15-3.3543.2543.253.35-3.5543.4543.453.55-3.7533.6533.653.75-3.9513.8513.85
解题步骤 3
化简 fM 列。
xyMidpoint(M)fM1.95-2.15192.0538.9492.15-2.35192.2542.752.35-2.55172.4541.652.55-2.75142.6537.12.75-2.9592.8525.652.95-3.1573.0521.3493.15-3.3543.25133.35-3.5543.4513.83.55-3.7533.6510.953.75-3.9513.853.85
解题步骤 4
fM 列中的值相加。
38.949+42.75+41.65+37.1+25.65+21.349+13+13.8+10.95+3.85=249.049
解题步骤 5
将频率列中的值相加。
n=19+19+17+14+9+7+4+4+3+1=97
解题步骤 6
均值 (mu) 为 fM 的和除以 n,即为频率的和。
μ=fMf
解题步骤 7
平均值是中点和频率的乘积之和除以频率总和。
μ=249.04997
解题步骤 8
化简 μ=249.04997 的右边。
2.56752577
 [x2  12  π  xdx ]