输入问题...
有限数学 示例
, , ,
解题步骤 1
解题步骤 1.1
化简每一项。
解题步骤 1.1.1
将 乘以 。
解题步骤 1.1.2
将 乘以 。
解题步骤 1.1.3
将 乘以 。
解题步骤 1.1.4
将 乘以 。
解题步骤 1.2
移动 。
解题步骤 1.3
移动 。
解题步骤 1.4
将 和 重新排序。
解题步骤 1.5
化简每一项。
解题步骤 1.5.1
将 乘以 。
解题步骤 1.5.2
将 乘以 。
解题步骤 1.5.3
将 乘以 。
解题步骤 1.5.4
将 重写为 。
解题步骤 1.6
化简每一项。
解题步骤 1.6.1
将 乘以 。
解题步骤 1.6.2
将 乘以 。
解题步骤 1.7
移动 。
解题步骤 1.8
移动 。
解题步骤 1.9
将 和 重新排序。
解题步骤 1.10
化简每一项。
解题步骤 1.10.1
将 重写为 。
解题步骤 1.10.2
将 乘以 。
解题步骤 2
Write the system as a matrix.
解题步骤 3
解题步骤 3.1
Perform the row operation to make the entry at a .
解题步骤 3.1.1
Perform the row operation to make the entry at a .
解题步骤 3.1.2
化简 。
解题步骤 3.2
Perform the row operation to make the entry at a .
解题步骤 3.2.1
Perform the row operation to make the entry at a .
解题步骤 3.2.2
化简 。
解题步骤 3.3
Perform the row operation to make the entry at a .
解题步骤 3.3.1
Perform the row operation to make the entry at a .
解题步骤 3.3.2
化简 。
解题步骤 3.4
Swap with to put a nonzero entry at .
解题步骤 3.5
Perform the row operation to make the entry at a .
解题步骤 3.5.1
Perform the row operation to make the entry at a .
解题步骤 3.5.2
化简 。
解题步骤 3.6
Swap with to put a nonzero entry at .
解题步骤 3.7
Multiply each element of by to make the entry at a .
解题步骤 3.7.1
Multiply each element of by to make the entry at a .
解题步骤 3.7.2
化简 。
解题步骤 3.8
Multiply each element of by to make the entry at a .
解题步骤 3.8.1
Multiply each element of by to make the entry at a .
解题步骤 3.8.2
化简 。
解题步骤 3.9
Perform the row operation to make the entry at a .
解题步骤 3.9.1
Perform the row operation to make the entry at a .
解题步骤 3.9.2
化简 。
解题步骤 3.10
Perform the row operation to make the entry at a .
解题步骤 3.10.1
Perform the row operation to make the entry at a .
解题步骤 3.10.2
化简 。
解题步骤 3.11
Perform the row operation to make the entry at a .
解题步骤 3.11.1
Perform the row operation to make the entry at a .
解题步骤 3.11.2
化简 。
解题步骤 3.12
Perform the row operation to make the entry at a .
解题步骤 3.12.1
Perform the row operation to make the entry at a .
解题步骤 3.12.2
化简 。
解题步骤 3.13
Perform the row operation to make the entry at a .
解题步骤 3.13.1
Perform the row operation to make the entry at a .
解题步骤 3.13.2
化简 。
解题步骤 4
Use the result matrix to declare the final solution to the system of equations.
解题步骤 5
The solution is the set of ordered pairs that make the system true.