有限数学 示例

使用一个矩阵和克莱姆法则来求解。 9y-5x=3 , x+y=1 , z+2y=2
9y-5x=39y5x=3 , x+y=1x+y=1 , z+2y=2z+2y=2
解题步骤 1
Move all of the variables to the left side of each equation.
点击获取更多步骤...
解题步骤 1.1
9y9y-5x5x 重新排序。
-5x+9y=35x+9y=3
x+y=1x+y=1
z+2y=2z+2y=2
解题步骤 1.2
zz2y2y 重新排序。
-5x+9y=35x+9y=3
x+y=1x+y=1
2y+z=22y+z=2
-5x+9y=35x+9y=3
x+y=1x+y=1
2y+z=22y+z=2
解题步骤 2
以矩阵形式表示方程组。
[-590110021][xyz]=[312]590110021xyz=312
解题步骤 3
Find the determinant of the coefficient matrix [-590110021]590110021.
点击获取更多步骤...
解题步骤 3.1
Write [-590110021]590110021 in determinant notation.
|-590110021|∣ ∣590110021∣ ∣
解题步骤 3.2
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in column 33 by its cofactor and add.
点击获取更多步骤...
解题步骤 3.2.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣ ∣+++++∣ ∣
解题步骤 3.2.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
解题步骤 3.2.3
The minor for a13a13 is the determinant with row 11 and column 33 deleted.
|1102|1102
解题步骤 3.2.4
Multiply element a13a13 by its cofactor.
0|1102|01102
解题步骤 3.2.5
The minor for a23a23 is the determinant with row 22 and column 33 deleted.
|-5902|5902
解题步骤 3.2.6
Multiply element a23a23 by its cofactor.
0|-5902|05902
解题步骤 3.2.7
The minor for a33a33 is the determinant with row 33 and column 33 deleted.
|-5911|5911
解题步骤 3.2.8
Multiply element a33a33 by its cofactor.
1|-5911|15911
解题步骤 3.2.9
Add the terms together.
0|1102|+0|-5902|+1|-5911|01102+05902+15911
0|1102|+0|-5902|+1|-5911|01102+05902+15911
解题步骤 3.3
00 乘以 |1102|1102
0+0|-5902|+1|-5911|0+05902+15911
解题步骤 3.4
00 乘以 |-5902|5902
0+0+1|-5911|0+0+15911
解题步骤 3.5
计算 |-5911|5911
点击获取更多步骤...
解题步骤 3.5.1
可以使用公式 |abcd|=ad-cbabcd=adcb2×22×2 矩阵的行列式。
0+0+1(-51-19)0+0+1(5119)
解题步骤 3.5.2
化简行列式。
点击获取更多步骤...
解题步骤 3.5.2.1
化简每一项。
点击获取更多步骤...
解题步骤 3.5.2.1.1
-55 乘以 11
0+0+1(-5-19)0+0+1(519)
解题步骤 3.5.2.1.2
-11 乘以 99
0+0+1(-5-9)0+0+1(59)
0+0+1(-5-9)0+0+1(59)
解题步骤 3.5.2.2
-55 中减去 99
0+0+1-140+0+114
0+0+1-140+0+114
0+0+1-140+0+114
解题步骤 3.6
化简行列式。
点击获取更多步骤...
解题步骤 3.6.1
-1414 乘以 11
0+0-140+014
解题步骤 3.6.2
0000 相加。
0-14014
解题步骤 3.6.3
00 中减去 1414
-1414
-1414
D=-14D=14
解题步骤 4
Since the determinant is not 00, the system can be solved using Cramer's Rule.
解题步骤 5
Find the value of xx by Cramer's Rule, which states that x=DxDx=DxD.
点击获取更多步骤...
解题步骤 5.1
Replace column 11 of the coefficient matrix that corresponds to the xx-coefficients of the system with [312]312.
|390110221|∣ ∣390110221∣ ∣
解题步骤 5.2
Find the determinant.
点击获取更多步骤...
解题步骤 5.2.1
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in column 33 by its cofactor and add.
点击获取更多步骤...
解题步骤 5.2.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣ ∣+++++∣ ∣
解题步骤 5.2.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
解题步骤 5.2.1.3
The minor for a13a13 is the determinant with row 11 and column 33 deleted.
|1122|1122
解题步骤 5.2.1.4
Multiply element a13a13 by its cofactor.
0|1122|01122
解题步骤 5.2.1.5
The minor for a23a23 is the determinant with row 22 and column 33 deleted.
|3922|3922
解题步骤 5.2.1.6
Multiply element a23a23 by its cofactor.
0|3922|03922
解题步骤 5.2.1.7
The minor for a33a33 is the determinant with row 33 and column 33 deleted.
|3911|3911
解题步骤 5.2.1.8
Multiply element a33a33 by its cofactor.
1|3911|13911
解题步骤 5.2.1.9
Add the terms together.
0|1122|+0|3922|+1|3911|01122+03922+13911
0|1122|+0|3922|+1|3911|01122+03922+13911
解题步骤 5.2.2
00 乘以 |1122|1122
0+0|3922|+1|3911|0+03922+13911
解题步骤 5.2.3
00 乘以 |3922|3922
0+0+1|3911|0+0+13911
解题步骤 5.2.4
计算 |3911|3911
点击获取更多步骤...
解题步骤 5.2.4.1
可以使用公式 |abcd|=ad-cbabcd=adcb2×22×2 矩阵的行列式。
0+0+1(31-19)0+0+1(3119)
解题步骤 5.2.4.2
化简行列式。
点击获取更多步骤...
解题步骤 5.2.4.2.1
化简每一项。
点击获取更多步骤...
解题步骤 5.2.4.2.1.1
33 乘以 11
0+0+1(3-19)0+0+1(319)
解题步骤 5.2.4.2.1.2
-11 乘以 99
0+0+1(3-9)0+0+1(39)
0+0+1(3-9)0+0+1(39)
解题步骤 5.2.4.2.2
33 中减去 99
0+0+1-60+0+16
0+0+1-60+0+16
0+0+1-60+0+16
解题步骤 5.2.5
化简行列式。
点击获取更多步骤...
解题步骤 5.2.5.1
-66 乘以 11
0+0-60+06
解题步骤 5.2.5.2
0000 相加。
0-606
解题步骤 5.2.5.3
00 中减去 66
-66
-66
Dx=-6Dx=6
解题步骤 5.3
Use the formula to solve for xx.
x=DxDx=DxD
解题步骤 5.4
Substitute -1414 for DD and -66 for DxDx in the formula.
x=-6-14x=614
解题步骤 5.5
约去 -66-1414 的公因数。
点击获取更多步骤...
解题步骤 5.5.1
-66 中分解出因数 -22
x=-2(3)-14x=2(3)14
解题步骤 5.5.2
约去公因数。
点击获取更多步骤...
解题步骤 5.5.2.1
-1414 中分解出因数 -22
x=-23-27x=2327
解题步骤 5.5.2.2
约去公因数。
x=-23-27
解题步骤 5.5.2.3
重写表达式。
x=37
x=37
x=37
x=37
解题步骤 6
Find the value of y by Cramer's Rule, which states that y=DyD.
点击获取更多步骤...
解题步骤 6.1
Replace column 2 of the coefficient matrix that corresponds to the y-coefficients of the system with [312].
|-530110021|
解题步骤 6.2
Find the determinant.
点击获取更多步骤...
解题步骤 6.2.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in column 3 by its cofactor and add.
点击获取更多步骤...
解题步骤 6.2.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
解题步骤 6.2.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
解题步骤 6.2.1.3
The minor for a13 is the determinant with row 1 and column 3 deleted.
|1102|
解题步骤 6.2.1.4
Multiply element a13 by its cofactor.
0|1102|
解题步骤 6.2.1.5
The minor for a23 is the determinant with row 2 and column 3 deleted.
|-5302|
解题步骤 6.2.1.6
Multiply element a23 by its cofactor.
0|-5302|
解题步骤 6.2.1.7
The minor for a33 is the determinant with row 3 and column 3 deleted.
|-5311|
解题步骤 6.2.1.8
Multiply element a33 by its cofactor.
1|-5311|
解题步骤 6.2.1.9
Add the terms together.
0|1102|+0|-5302|+1|-5311|
0|1102|+0|-5302|+1|-5311|
解题步骤 6.2.2
0 乘以 |1102|
0+0|-5302|+1|-5311|
解题步骤 6.2.3
0 乘以 |-5302|
0+0+1|-5311|
解题步骤 6.2.4
计算 |-5311|
点击获取更多步骤...
解题步骤 6.2.4.1
可以使用公式 |abcd|=ad-cb2×2 矩阵的行列式。
0+0+1(-51-13)
解题步骤 6.2.4.2
化简行列式。
点击获取更多步骤...
解题步骤 6.2.4.2.1
化简每一项。
点击获取更多步骤...
解题步骤 6.2.4.2.1.1
-5 乘以 1
0+0+1(-5-13)
解题步骤 6.2.4.2.1.2
-1 乘以 3
0+0+1(-5-3)
0+0+1(-5-3)
解题步骤 6.2.4.2.2
-5 中减去 3
0+0+1-8
0+0+1-8
0+0+1-8
解题步骤 6.2.5
化简行列式。
点击获取更多步骤...
解题步骤 6.2.5.1
-8 乘以 1
0+0-8
解题步骤 6.2.5.2
00 相加。
0-8
解题步骤 6.2.5.3
0 中减去 8
-8
-8
Dy=-8
解题步骤 6.3
Use the formula to solve for y.
y=DyD
解题步骤 6.4
Substitute -14 for D and -8 for Dy in the formula.
y=-8-14
解题步骤 6.5
约去 -8-14 的公因数。
点击获取更多步骤...
解题步骤 6.5.1
-8 中分解出因数 -2
y=-2(4)-14
解题步骤 6.5.2
约去公因数。
点击获取更多步骤...
解题步骤 6.5.2.1
-14 中分解出因数 -2
y=-24-27
解题步骤 6.5.2.2
约去公因数。
y=-24-27
解题步骤 6.5.2.3
重写表达式。
y=47
y=47
y=47
y=47
解题步骤 7
Find the value of z by Cramer's Rule, which states that z=DzD.
点击获取更多步骤...
解题步骤 7.1
Replace column 3 of the coefficient matrix that corresponds to the z-coefficients of the system with [312].
|-593111022|
解题步骤 7.2
Find the determinant.
点击获取更多步骤...
解题步骤 7.2.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in column 1 by its cofactor and add.
点击获取更多步骤...
解题步骤 7.2.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
解题步骤 7.2.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
解题步骤 7.2.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|1122|
解题步骤 7.2.1.4
Multiply element a11 by its cofactor.
-5|1122|
解题步骤 7.2.1.5
The minor for a21 is the determinant with row 2 and column 1 deleted.
|9322|
解题步骤 7.2.1.6
Multiply element a21 by its cofactor.
-1|9322|
解题步骤 7.2.1.7
The minor for a31 is the determinant with row 3 and column 1 deleted.
|9311|
解题步骤 7.2.1.8
Multiply element a31 by its cofactor.
0|9311|
解题步骤 7.2.1.9
Add the terms together.
-5|1122|-1|9322|+0|9311|
-5|1122|-1|9322|+0|9311|
解题步骤 7.2.2
0 乘以 |9311|
-5|1122|-1|9322|+0
解题步骤 7.2.3
计算 |1122|
点击获取更多步骤...
解题步骤 7.2.3.1
可以使用公式 |abcd|=ad-cb2×2 矩阵的行列式。
-5(12-21)-1|9322|+0
解题步骤 7.2.3.2
化简行列式。
点击获取更多步骤...
解题步骤 7.2.3.2.1
化简每一项。
点击获取更多步骤...
解题步骤 7.2.3.2.1.1
2 乘以 1
-5(2-21)-1|9322|+0
解题步骤 7.2.3.2.1.2
-2 乘以 1
-5(2-2)-1|9322|+0
-5(2-2)-1|9322|+0
解题步骤 7.2.3.2.2
2 中减去 2
-50-1|9322|+0
-50-1|9322|+0
-50-1|9322|+0
解题步骤 7.2.4
计算 |9322|
点击获取更多步骤...
解题步骤 7.2.4.1
可以使用公式 |abcd|=ad-cb2×2 矩阵的行列式。
-50-1(92-23)+0
解题步骤 7.2.4.2
化简行列式。
点击获取更多步骤...
解题步骤 7.2.4.2.1
化简每一项。
点击获取更多步骤...
解题步骤 7.2.4.2.1.1
9 乘以 2
-50-1(18-23)+0
解题步骤 7.2.4.2.1.2
-2 乘以 3
-50-1(18-6)+0
-50-1(18-6)+0
解题步骤 7.2.4.2.2
18 中减去 6
-50-112+0
-50-112+0
-50-112+0
解题步骤 7.2.5
化简行列式。
点击获取更多步骤...
解题步骤 7.2.5.1
化简每一项。
点击获取更多步骤...
解题步骤 7.2.5.1.1
-5 乘以 0
0-112+0
解题步骤 7.2.5.1.2
-1 乘以 12
0-12+0
0-12+0
解题步骤 7.2.5.2
0 中减去 12
-12+0
解题步骤 7.2.5.3
-120 相加。
-12
-12
Dz=-12
解题步骤 7.3
Use the formula to solve for z.
z=DzD
解题步骤 7.4
Substitute -14 for D and -12 for Dz in the formula.
z=-12-14
解题步骤 7.5
约去 -12-14 的公因数。
点击获取更多步骤...
解题步骤 7.5.1
-12 中分解出因数 -2
z=-2(6)-14
解题步骤 7.5.2
约去公因数。
点击获取更多步骤...
解题步骤 7.5.2.1
-14 中分解出因数 -2
z=-26-27
解题步骤 7.5.2.2
约去公因数。
z=-26-27
解题步骤 7.5.2.3
重写表达式。
z=67
z=67
z=67
z=67
解题步骤 8
列出方程组的解。
x=37
y=47
z=67
 [x2  12  π  xdx ]