输入问题...
微积分学 示例
解题步骤 1
使用半角公式将 重新书写为 的形式。
解题步骤 2
由于 对于 是常数,所以将 移到积分外。
解题步骤 3
将单个积分拆分为多个积分。
解题步骤 4
应用常数不变法则。
解题步骤 5
解题步骤 5.1
设 。求 。
解题步骤 5.1.1
对 求导。
解题步骤 5.1.2
因为 对于 是常数,所以 对 的导数是 。
解题步骤 5.1.3
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 5.1.4
将 乘以 。
解题步骤 5.2
将下限代入替换 中的 。
解题步骤 5.3
将 乘以 。
解题步骤 5.4
将上限代入替换 中的 。
解题步骤 5.5
将 乘以 。
解题步骤 5.6
求得的 和 的值将用来计算定积分。
解题步骤 5.7
使用 、 以及积分的新极限重写该问题。
解题步骤 6
组合 和 。
解题步骤 7
由于 对于 是常数,所以将 移到积分外。
解题步骤 8
对 的积分为 。
解题步骤 9
解题步骤 9.1
计算 在 处和在 处的值。
解题步骤 9.2
计算 在 处和在 处的值。
解题步骤 9.3
将 和 相加。
解题步骤 10
解题步骤 10.1
的准确值为 。
解题步骤 10.2
将 乘以 。
解题步骤 10.3
将 和 相加。
解题步骤 10.4
组合 和 。
解题步骤 11
解题步骤 11.1
化简每一项。
解题步骤 11.1.1
化简分子。
解题步骤 11.1.1.1
减去 的全角,直至角度大于等于 且小于 。
解题步骤 11.1.1.2
的准确值为 。
解题步骤 11.1.2
用 除以 。
解题步骤 11.2
将 和 相加。
解题步骤 11.3
约去 的公因数。
解题步骤 11.3.1
从 中分解出因数 。
解题步骤 11.3.2
约去公因数。
解题步骤 11.3.3
重写表达式。
解题步骤 12
结果可以多种形式表示。
恰当形式:
小数形式: