输入问题...
微积分学 示例
解题步骤 1
将 书写为一个函数。
解题步骤 2
解题步骤 2.1
求一阶导数。
解题步骤 2.1.1
根据加法法则, 对 的导数是 。
解题步骤 2.1.2
计算 。
解题步骤 2.1.2.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 2.1.2.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 2.1.2.3
组合 和 。
解题步骤 2.1.2.4
组合 和 。
解题步骤 2.1.2.5
约去 和 的公因数。
解题步骤 2.1.2.5.1
从 中分解出因数 。
解题步骤 2.1.2.5.2
约去公因数。
解题步骤 2.1.2.5.2.1
从 中分解出因数 。
解题步骤 2.1.2.5.2.2
约去公因数。
解题步骤 2.1.2.5.2.3
重写表达式。
解题步骤 2.1.3
计算 。
解题步骤 2.1.3.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 2.1.3.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 2.1.3.3
将 乘以 。
解题步骤 2.2
求二阶导数。
解题步骤 2.2.1
根据加法法则, 对 的导数是 。
解题步骤 2.2.2
计算 。
解题步骤 2.2.2.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 2.2.2.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 2.2.2.3
组合 和 。
解题步骤 2.2.2.4
组合 和 。
解题步骤 2.2.3
计算 。
解题步骤 2.2.3.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 2.2.3.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 2.2.3.3
将 乘以 。
解题步骤 2.3
对 的二阶导数是 。
解题步骤 3
解题步骤 3.1
将二阶导数设为等于 。
解题步骤 3.2
在等式两边都加上 。
解题步骤 3.3
等式两边同时乘以 。
解题步骤 3.4
化简方程的两边。
解题步骤 3.4.1
化简左边。
解题步骤 3.4.1.1
化简 。
解题步骤 3.4.1.1.1
合并。
解题步骤 3.4.1.1.2
约去 的公因数。
解题步骤 3.4.1.1.2.1
约去公因数。
解题步骤 3.4.1.1.2.2
重写表达式。
解题步骤 3.4.1.1.3
约去 的公因数。
解题步骤 3.4.1.1.3.1
约去公因数。
解题步骤 3.4.1.1.3.2
用 除以 。
解题步骤 3.4.2
化简右边。
解题步骤 3.4.2.1
化简 。
解题步骤 3.4.2.1.1
约去 的公因数。
解题步骤 3.4.2.1.1.1
从 中分解出因数 。
解题步骤 3.4.2.1.1.2
约去公因数。
解题步骤 3.4.2.1.1.3
重写表达式。
解题步骤 3.4.2.1.2
将 乘以 。
解题步骤 3.5
取方程两边的指定根来消去方程左边的指数。
解题步骤 3.6
化简 。
解题步骤 3.6.1
将 重写为 。
解题步骤 3.6.2
假设各项均为正实数,从根式下提出各项。
解题步骤 3.7
完全解为同时包括解的正数和负数部分的结果。
解题步骤 3.7.1
首先,利用 的正值求第一个解。
解题步骤 3.7.2
下一步,使用 的负值来求第二个解。
解题步骤 3.7.3
完全解为同时包括解的正数和负数部分的结果。
解题步骤 4
解题步骤 4.1
将 代入 以求 的值。
解题步骤 4.1.1
使用表达式中的 替换变量 。
解题步骤 4.1.2
化简结果。
解题步骤 4.1.2.1
化简每一项。
解题步骤 4.1.2.1.1
对 进行 次方运算。
解题步骤 4.1.2.1.2
约去 的公因数。
解题步骤 4.1.2.1.2.1
从 中分解出因数 。
解题步骤 4.1.2.1.2.2
约去公因数。
解题步骤 4.1.2.1.2.3
重写表达式。
解题步骤 4.1.2.1.3
对 进行 次方运算。
解题步骤 4.1.2.1.4
将 乘以 。
解题步骤 4.1.2.2
从 中减去 。
解题步骤 4.1.2.3
最终答案为 。
解题步骤 4.2
通过将 代入 中求得的点为 。这个点可能是一个拐点。
解题步骤 4.3
将 代入 以求 的值。
解题步骤 4.3.1
使用表达式中的 替换变量 。
解题步骤 4.3.2
化简结果。
解题步骤 4.3.2.1
化简每一项。
解题步骤 4.3.2.1.1
对 进行 次方运算。
解题步骤 4.3.2.1.2
约去 的公因数。
解题步骤 4.3.2.1.2.1
从 中分解出因数 。
解题步骤 4.3.2.1.2.2
约去公因数。
解题步骤 4.3.2.1.2.3
重写表达式。
解题步骤 4.3.2.1.3
对 进行 次方运算。
解题步骤 4.3.2.1.4
将 乘以 。
解题步骤 4.3.2.2
从 中减去 。
解题步骤 4.3.2.3
最终答案为 。
解题步骤 4.4
通过将 代入 中求得的点为 。这个点可能是一个拐点。
解题步骤 4.5
确定可能是拐点的点。
解题步骤 5
分解 到各点周围的区间中,这些点有可能是拐点。
解题步骤 6
解题步骤 6.1
使用表达式中的 替换变量 。
解题步骤 6.2
化简结果。
解题步骤 6.2.1
化简每一项。
解题步骤 6.2.1.1
对 进行 次方运算。
解题步骤 6.2.1.2
将 乘以 。
解题步骤 6.2.1.3
用 除以 。
解题步骤 6.2.2
从 中减去 。
解题步骤 6.2.3
最终答案为 。
解题步骤 6.3
在 处,二阶导数为 。由于其值为正,二阶导数在区间 上递增。
因为 ,所以函数在 上递增
因为 ,所以函数在 上递增
解题步骤 7
解题步骤 7.1
使用表达式中的 替换变量 。
解题步骤 7.2
化简结果。
解题步骤 7.2.1
化简每一项。
解题步骤 7.2.1.1
对 进行任意正数次方的运算均得到 。
解题步骤 7.2.1.2
将 乘以 。
解题步骤 7.2.1.3
用 除以 。
解题步骤 7.2.2
从 中减去 。
解题步骤 7.2.3
最终答案为 。
解题步骤 7.3
在 ,二阶导数为 。因为该值是负数,所以该二阶导数在区间 上递减
因为 ,所以在 上递减
因为 ,所以在 上递减
解题步骤 8
解题步骤 8.1
使用表达式中的 替换变量 。
解题步骤 8.2
化简结果。
解题步骤 8.2.1
化简每一项。
解题步骤 8.2.1.1
对 进行 次方运算。
解题步骤 8.2.1.2
将 乘以 。
解题步骤 8.2.1.3
用 除以 。
解题步骤 8.2.2
从 中减去 。
解题步骤 8.2.3
最终答案为 。
解题步骤 8.3
在 处,二阶导数为 。由于其值为正,二阶导数在区间 上递增。
因为 ,所以函数在 上递增
因为 ,所以函数在 上递增
解题步骤 9
拐点是凹凸性符号发生变化的曲线上的一个点,符号由正变为负,或是由负变为正。在本例中,拐点为 。
解题步骤 10