输入问题...
微积分学 示例
解题步骤 1
解题步骤 1.1
求一阶导数。
解题步骤 1.1.1
求微分。
解题步骤 1.1.1.1
根据加法法则, 对 的导数是 。
解题步骤 1.1.1.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 1.1.2
计算 。
解题步骤 1.1.2.1
使用乘积法则求微分,根据该法则, 等于 ,其中 且 。
解题步骤 1.1.2.2
将 重写为 。
解题步骤 1.1.2.3
使用链式法则求微分,根据该法则, 等于 ,其中 且 。
解题步骤 1.1.2.3.1
要使用链式法则,请将 设为 。
解题步骤 1.1.2.3.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 1.1.2.3.3
使用 替换所有出现的 。
解题步骤 1.1.2.4
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 1.1.2.5
因为 对于 是常数,所以 对 的导数为 。
解题步骤 1.1.2.6
将 中的指数相乘。
解题步骤 1.1.2.6.1
运用幂法则并将指数相乘,。
解题步骤 1.1.2.6.2
将 乘以 。
解题步骤 1.1.2.7
将 乘以 。
解题步骤 1.1.2.8
对 进行 次方运算。
解题步骤 1.1.2.9
使用幂法则 合并指数。
解题步骤 1.1.2.10
从 中减去 。
解题步骤 1.1.2.11
将 乘以 。
解题步骤 1.1.2.12
将 乘以 。
解题步骤 1.1.2.13
将 和 相加。
解题步骤 1.1.3
化简。
解题步骤 1.1.3.1
使用负指数规则 重写表达式。
解题步骤 1.1.3.2
组合 和 。
解题步骤 1.2
对 的一阶导数是 。
解题步骤 2
解题步骤 2.1
将一阶导数设为等于 。
解题步骤 2.2
求方程中各项的最小公分母 (LCD)。
解题步骤 2.2.1
求一列数值的最小公分母 (LCD) 等同于求这些数值的分母的最小公倍数 (LCM)。
解题步骤 2.2.2
1 和任何表达式的最小公倍数就是该表达式。
解题步骤 2.3
将 中的每一项乘以 以消去分数。
解题步骤 2.3.1
将 中的每一项乘以 。
解题步骤 2.3.2
化简左边。
解题步骤 2.3.2.1
化简每一项。
解题步骤 2.3.2.1.1
通过指数相加将 乘以 。
解题步骤 2.3.2.1.1.1
移动 。
解题步骤 2.3.2.1.1.2
将 乘以 。
解题步骤 2.3.2.1.1.2.1
对 进行 次方运算。
解题步骤 2.3.2.1.1.2.2
使用幂法则 合并指数。
解题步骤 2.3.2.1.1.3
将 和 相加。
解题步骤 2.3.2.1.2
约去 的公因数。
解题步骤 2.3.2.1.2.1
约去公因数。
解题步骤 2.3.2.1.2.2
重写表达式。
解题步骤 2.3.3
化简右边。
解题步骤 2.3.3.1
将 乘以 。
解题步骤 2.4
求解方程。
解题步骤 2.4.1
从等式两边同时减去 。
解题步骤 2.4.2
将 中的每一项除以 并化简。
解题步骤 2.4.2.1
将 中的每一项都除以 。
解题步骤 2.4.2.2
化简左边。
解题步骤 2.4.2.2.1
约去 的公因数。
解题步骤 2.4.2.2.1.1
约去公因数。
解题步骤 2.4.2.2.1.2
用 除以 。
解题步骤 2.4.2.3
化简右边。
解题步骤 2.4.2.3.1
用 除以 。
解题步骤 2.4.3
取方程两边的指定根来消去方程左边的指数。
解题步骤 2.4.4
完全解为同时包括解的正数和负数部分的结果。
解题步骤 2.4.4.1
首先,利用 的正值求第一个解。
解题步骤 2.4.4.2
下一步,使用 的负值来求第二个解。
解题步骤 2.4.4.3
完全解为同时包括解的正数和负数部分的结果。
解题步骤 2.5
排除不能使 成立的解。
解题步骤 3
原问题的定义域中没有使得导数为 或无意义的 的值。
找不到驻点
解题步骤 4
解题步骤 4.1
将 的分母设为等于 ,以求使表达式无意义的区间。
解题步骤 4.2
求解 。
解题步骤 4.2.1
取方程两边的指定根来消去方程左边的指数。
解题步骤 4.2.2
化简 。
解题步骤 4.2.2.1
将 重写为 。
解题步骤 4.2.2.2
假设各项均为实数,将其从根式下提取出来。
解题步骤 5
求出让导数 等于 或无定义的点后,用来检验 在何处增加和在何处减少的区间即为 。
解题步骤 6
解题步骤 6.1
使用表达式中的 替换变量 。
解题步骤 6.2
化简结果。
解题步骤 6.2.1
化简每一项。
解题步骤 6.2.1.1
将 乘以 。
解题步骤 6.2.1.2
对 进行 次方运算。
解题步骤 6.2.1.3
用 除以 。
解题步骤 6.2.2
从 中减去 。
解题步骤 6.2.3
最终答案为 。
解题步骤 6.3
在 处,导数为 。由于其值为负,函数在 上递减。
因为 ,所以在 上递减
因为 ,所以在 上递减
解题步骤 7
解题步骤 7.1
使用表达式中的 替换变量 。
解题步骤 7.2
化简结果。
解题步骤 7.2.1
化简每一项。
解题步骤 7.2.1.1
将 乘以 。
解题步骤 7.2.1.2
一的任意次幂都为一。
解题步骤 7.2.1.3
用 除以 。
解题步骤 7.2.2
将 和 相加。
解题步骤 7.2.3
最终答案为 。
解题步骤 7.3
在 处,导数为 。由于其值为正,函数在 上递增。
因为 ,所以函数在 上递增
因为 ,所以函数在 上递增
解题步骤 8
列出函数在其上递增与递减的区间。
递增区间:
递减于:
解题步骤 9