输入问题...
微积分学 示例
解题步骤 1
解题步骤 1.1
求一阶导数。
解题步骤 1.1.1
求微分。
解题步骤 1.1.1.1
根据加法法则, 对 的导数是 。
解题步骤 1.1.1.2
因为 对于 是常数,所以 对 的导数为 。
解题步骤 1.1.2
计算 。
解题步骤 1.1.2.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 1.1.2.2
对 的导数为 。
解题步骤 1.1.3
从 中减去 。
解题步骤 1.2
对 的一阶导数是 。
解题步骤 2
解题步骤 2.1
将一阶导数设为等于 。
解题步骤 2.2
将分子设为等于零。
解题步骤 2.3
排除不能使 成立的解。
解题步骤 3
原问题的定义域中没有使得导数为 或无意义的 的值。
找不到驻点
解题步骤 4
解题步骤 4.1
将 的分母设为等于 ,以求使表达式无意义的区间。
解题步骤 4.2
求解 。
解题步骤 4.2.1
去掉绝对值项。因为 ,所以这将使方程右边新增 。
解题步骤 4.2.2
正负 是 。
解题步骤 5
求出让导数 等于 或无定义的点后,用来检验 在何处增加和在何处减少的区间即为 。
解题步骤 6
解题步骤 6.1
使用表达式中的 替换变量 。
解题步骤 6.2
化简结果。
解题步骤 6.2.1
绝对值就是一个数和零之间的距离。 和 之间的距离为 。
解题步骤 6.2.2
用 除以 。
解题步骤 6.2.3
最终答案为 。
解题步骤 6.3
在 处,导数为 。由于其值为正,函数在 上递增。
因为 ,所以函数在 上递增
因为 ,所以函数在 上递增
解题步骤 7
解题步骤 7.1
使用表达式中的 替换变量 。
解题步骤 7.2
化简结果。
解题步骤 7.2.1
绝对值就是一个数和零之间的距离。 和 之间的距离为 。
解题步骤 7.2.2
约去 的公因数。
解题步骤 7.2.2.1
约去公因数。
解题步骤 7.2.2.2
重写表达式。
解题步骤 7.2.3
将 乘以 。
解题步骤 7.2.4
最终答案为 。
解题步骤 7.3
在 处,导数为 。由于其值为负,函数在 上递减。
因为 ,所以在 上递减
因为 ,所以在 上递减
解题步骤 8
列出函数在其上递增与递减的区间。
递增区间:
递减于:
解题步骤 9