输入问题...
微积分学 示例
解题步骤 1
解题步骤 1.1
求一阶导数。
解题步骤 1.1.1
使用除法定则求微分,根据该法则, 等于 ,其中 且 。
解题步骤 1.1.2
求微分。
解题步骤 1.1.2.1
根据加法法则, 对 的导数是 。
解题步骤 1.1.2.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 1.1.2.3
因为 对于 是常数,所以 对 的导数为 。
解题步骤 1.1.2.4
化简表达式。
解题步骤 1.1.2.4.1
将 和 相加。
解题步骤 1.1.2.4.2
将 乘以 。
解题步骤 1.1.2.5
根据加法法则, 对 的导数是 。
解题步骤 1.1.2.6
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 1.1.2.7
因为 对于 是常数,所以 对 的导数为 。
解题步骤 1.1.2.8
化简表达式。
解题步骤 1.1.2.8.1
将 和 相加。
解题步骤 1.1.2.8.2
将 乘以 。
解题步骤 1.1.3
化简。
解题步骤 1.1.3.1
运用分配律。
解题步骤 1.1.3.2
运用分配律。
解题步骤 1.1.3.3
化简分子。
解题步骤 1.1.3.3.1
化简每一项。
解题步骤 1.1.3.3.1.1
通过指数相加将 乘以 。
解题步骤 1.1.3.3.1.1.1
移动 。
解题步骤 1.1.3.3.1.1.2
将 乘以 。
解题步骤 1.1.3.3.1.2
将 乘以 。
解题步骤 1.1.3.3.2
从 中减去 。
解题步骤 1.1.3.4
重新排序项。
解题步骤 1.1.3.5
从 中分解出因数 。
解题步骤 1.1.3.6
从 中分解出因数 。
解题步骤 1.1.3.7
从 中分解出因数 。
解题步骤 1.1.3.8
将 重写为 。
解题步骤 1.1.3.9
从 中分解出因数 。
解题步骤 1.1.3.10
将 重写为 。
解题步骤 1.1.3.11
将负号移到分数的前面。
解题步骤 1.2
对 的一阶导数是 。
解题步骤 2
解题步骤 2.1
将一阶导数设为等于 。
解题步骤 2.2
将分子设为等于零。
解题步骤 2.3
求解 的方程。
解题步骤 2.3.1
使用二次公式求解。
解题步骤 2.3.2
将 、 和 的值代入二次公式中并求解 。
解题步骤 2.3.3
化简。
解题步骤 2.3.3.1
化简分子。
解题步骤 2.3.3.1.1
对 进行 次方运算。
解题步骤 2.3.3.1.2
乘以 。
解题步骤 2.3.3.1.2.1
将 乘以 。
解题步骤 2.3.3.1.2.2
将 乘以 。
解题步骤 2.3.3.1.3
将 和 相加。
解题步骤 2.3.3.1.4
将 重写为 。
解题步骤 2.3.3.1.4.1
从 中分解出因数 。
解题步骤 2.3.3.1.4.2
将 重写为 。
解题步骤 2.3.3.1.5
从根式下提出各项。
解题步骤 2.3.3.2
将 乘以 。
解题步骤 2.3.3.3
化简 。
解题步骤 2.3.4
化简表达式以求 在 部分的解。
解题步骤 2.3.4.1
化简分子。
解题步骤 2.3.4.1.1
对 进行 次方运算。
解题步骤 2.3.4.1.2
乘以 。
解题步骤 2.3.4.1.2.1
将 乘以 。
解题步骤 2.3.4.1.2.2
将 乘以 。
解题步骤 2.3.4.1.3
将 和 相加。
解题步骤 2.3.4.1.4
将 重写为 。
解题步骤 2.3.4.1.4.1
从 中分解出因数 。
解题步骤 2.3.4.1.4.2
将 重写为 。
解题步骤 2.3.4.1.5
从根式下提出各项。
解题步骤 2.3.4.2
将 乘以 。
解题步骤 2.3.4.3
化简 。
解题步骤 2.3.4.4
将 变换为 。
解题步骤 2.3.5
化简表达式以求 在 部分的解。
解题步骤 2.3.5.1
化简分子。
解题步骤 2.3.5.1.1
对 进行 次方运算。
解题步骤 2.3.5.1.2
乘以 。
解题步骤 2.3.5.1.2.1
将 乘以 。
解题步骤 2.3.5.1.2.2
将 乘以 。
解题步骤 2.3.5.1.3
将 和 相加。
解题步骤 2.3.5.1.4
将 重写为 。
解题步骤 2.3.5.1.4.1
从 中分解出因数 。
解题步骤 2.3.5.1.4.2
将 重写为 。
解题步骤 2.3.5.1.5
从根式下提出各项。
解题步骤 2.3.5.2
将 乘以 。
解题步骤 2.3.5.3
化简 。
解题步骤 2.3.5.4
将 变换为 。
解题步骤 2.3.6
最终答案为两个解的组合。
解题步骤 3
使导数等于 的值为 。
解题步骤 4
分解 到 值周围的独立区间中,这些值使导数 或未定义。
解题步骤 5
解题步骤 5.1
使用表达式中的 替换变量 。
解题步骤 5.2
化简结果。
解题步骤 5.2.1
化简分子。
解题步骤 5.2.1.1
对 进行 次方运算。
解题步骤 5.2.1.2
将 乘以 。
解题步骤 5.2.1.3
将 和 相加。
解题步骤 5.2.1.4
从 中减去 。
解题步骤 5.2.2
化简分母。
解题步骤 5.2.2.1
对 进行 次方运算。
解题步骤 5.2.2.2
将 和 相加。
解题步骤 5.2.2.3
对 进行 次方运算。
解题步骤 5.2.3
化简表达式。
解题步骤 5.2.3.1
用 除以 。
解题步骤 5.2.3.2
将 乘以 。
解题步骤 5.2.4
最终答案为 。
解题步骤 5.3
在 处,导数为 。由于其值为负,函数在 上递减。
因为 ,所以在 上递减
因为 ,所以在 上递减
解题步骤 6
解题步骤 6.1
使用表达式中的 替换变量 。
解题步骤 6.2
化简结果。
解题步骤 6.2.1
化简分子。
解题步骤 6.2.1.1
对 进行 次方运算。
解题步骤 6.2.1.2
将 乘以 。
解题步骤 6.2.1.3
从 中减去 。
解题步骤 6.2.1.4
从 中减去 。
解题步骤 6.2.2
化简分母。
解题步骤 6.2.2.1
对 进行 次方运算。
解题步骤 6.2.2.2
将 和 相加。
解题步骤 6.2.2.3
对 进行 次方运算。
解题步骤 6.2.3
化简表达式。
解题步骤 6.2.3.1
用 除以 。
解题步骤 6.2.3.2
将 乘以 。
解题步骤 6.2.4
最终答案为 。
解题步骤 6.3
在 处,导数为 。由于其值为正,函数在 上递增。
因为 ,所以函数在 上递增
因为 ,所以函数在 上递增
解题步骤 7
解题步骤 7.1
使用表达式中的 替换变量 。
解题步骤 7.2
化简结果。
解题步骤 7.2.1
化简分子。
解题步骤 7.2.1.1
对 进行 次方运算。
解题步骤 7.2.1.2
将 乘以 。
解题步骤 7.2.1.3
从 中减去 。
解题步骤 7.2.1.4
从 中减去 。
解题步骤 7.2.2
化简分母。
解题步骤 7.2.2.1
对 进行 次方运算。
解题步骤 7.2.2.2
将 和 相加。
解题步骤 7.2.2.3
对 进行 次方运算。
解题步骤 7.2.3
化简表达式。
解题步骤 7.2.3.1
用 除以 。
解题步骤 7.2.3.2
将 乘以 。
解题步骤 7.2.4
最终答案为 。
解题步骤 7.3
在 处,导数为 。由于其值为负,函数在 上递减。
因为 ,所以在 上递减
因为 ,所以在 上递减
解题步骤 8
列出函数在其上递增与递减的区间。
递增区间:
递减于:
解题步骤 9