微积分学 示例

求凹凸性 32e^x-e^(2x)
解题步骤 1
书写为一个函数。
解题步骤 2
Find the values where the second derivative is equal to .
点击获取更多步骤...
解题步骤 2.1
求二阶导数。
点击获取更多步骤...
解题步骤 2.1.1
求一阶导数。
点击获取更多步骤...
解题步骤 2.1.1.1
根据加法法则, 的导数是
解题步骤 2.1.1.2
计算
点击获取更多步骤...
解题步骤 2.1.1.2.1
因为 对于 是常数,所以 的导数是
解题步骤 2.1.1.2.2
使用指数法则求微分,根据该法则, 等于 ,其中 =
解题步骤 2.1.1.3
计算
点击获取更多步骤...
解题步骤 2.1.1.3.1
因为 对于 是常数,所以 的导数是
解题步骤 2.1.1.3.2
使用链式法则求微分,根据该法则, 等于 ,其中
点击获取更多步骤...
解题步骤 2.1.1.3.2.1
要使用链式法则,请将 设为
解题步骤 2.1.1.3.2.2
使用指数法则求微分,根据该法则, 等于 ,其中 =
解题步骤 2.1.1.3.2.3
使用 替换所有出现的
解题步骤 2.1.1.3.3
因为 对于 是常数,所以 的导数是
解题步骤 2.1.1.3.4
使用幂法则求微分,根据该法则, 等于 ,其中
解题步骤 2.1.1.3.5
乘以
解题步骤 2.1.1.3.6
移到 的左侧。
解题步骤 2.1.1.3.7
乘以
解题步骤 2.1.2
求二阶导数。
点击获取更多步骤...
解题步骤 2.1.2.1
根据加法法则, 的导数是
解题步骤 2.1.2.2
计算
点击获取更多步骤...
解题步骤 2.1.2.2.1
因为 对于 是常数,所以 的导数是
解题步骤 2.1.2.2.2
使用指数法则求微分,根据该法则, 等于 ,其中 =
解题步骤 2.1.2.3
计算
点击获取更多步骤...
解题步骤 2.1.2.3.1
因为 对于 是常数,所以 的导数是
解题步骤 2.1.2.3.2
使用链式法则求微分,根据该法则, 等于 ,其中
点击获取更多步骤...
解题步骤 2.1.2.3.2.1
要使用链式法则,请将 设为
解题步骤 2.1.2.3.2.2
使用指数法则求微分,根据该法则, 等于 ,其中 =
解题步骤 2.1.2.3.2.3
使用 替换所有出现的
解题步骤 2.1.2.3.3
因为 对于 是常数,所以 的导数是
解题步骤 2.1.2.3.4
使用幂法则求微分,根据该法则, 等于 ,其中
解题步骤 2.1.2.3.5
乘以
解题步骤 2.1.2.3.6
移到 的左侧。
解题步骤 2.1.2.3.7
乘以
解题步骤 2.1.3
的二阶导数是
解题步骤 2.2
使二阶导数等于 ,然后求解方程
点击获取更多步骤...
解题步骤 2.2.1
将二阶导数设为等于
解题步骤 2.2.2
对方程左边进行因式分解。
点击获取更多步骤...
解题步骤 2.2.2.1
重写为
解题步骤 2.2.2.2
使 。用 代入替换所有出现的
解题步骤 2.2.2.3
中分解出因数
点击获取更多步骤...
解题步骤 2.2.2.3.1
中分解出因数
解题步骤 2.2.2.3.2
中分解出因数
解题步骤 2.2.2.3.3
中分解出因数
解题步骤 2.2.2.4
使用 替换所有出现的
解题步骤 2.2.3
如果等式左侧的任一因数等于 ,则整个表达式将等于
解题步骤 2.2.4
设为等于 并求解
点击获取更多步骤...
解题步骤 2.2.4.1
设为等于
解题步骤 2.2.4.2
求解
点击获取更多步骤...
解题步骤 2.2.4.2.1
取方程两边的自然对数从而去掉指数中的变量。
解题步骤 2.2.4.2.2
因为 无意义,所以方程无解。
无定义
解题步骤 2.2.4.2.3
无解
无解
无解
无解
解题步骤 2.2.5
设为等于 并求解
点击获取更多步骤...
解题步骤 2.2.5.1
设为等于
解题步骤 2.2.5.2
求解
点击获取更多步骤...
解题步骤 2.2.5.2.1
从等式两边同时减去
解题步骤 2.2.5.2.2
中的每一项除以 并化简。
点击获取更多步骤...
解题步骤 2.2.5.2.2.1
中的每一项都除以
解题步骤 2.2.5.2.2.2
化简左边。
点击获取更多步骤...
解题步骤 2.2.5.2.2.2.1
将两个负数相除得到一个正数。
解题步骤 2.2.5.2.2.2.2
除以
解题步骤 2.2.5.2.2.3
化简右边。
点击获取更多步骤...
解题步骤 2.2.5.2.2.3.1
除以
解题步骤 2.2.5.2.3
取方程两边的自然对数从而去掉指数中的变量。
解题步骤 2.2.5.2.4
展开左边。
点击获取更多步骤...
解题步骤 2.2.5.2.4.1
通过将 移到对数外来展开
解题步骤 2.2.5.2.4.2
的自然对数为
解题步骤 2.2.5.2.4.3
乘以
解题步骤 2.2.6
最终解为使 成立的所有值。
解题步骤 3
表达式的定义域是除使表达式无定义的值外的所有实数。在本例中,不存在使表达式无定义的实数。
区间计数法:
集合符号:
解题步骤 4
在二阶导数为零或无意义的 值附近建立区间。
解题步骤 5
将区间 内的任意数代入二阶导数中并计算,以判断该函数的凹凸性。
点击获取更多步骤...
解题步骤 5.1
使用表达式中的 替换变量
解题步骤 5.2
化简结果。
点击获取更多步骤...
解题步骤 5.2.1
化简每一项。
点击获取更多步骤...
解题步骤 5.2.1.1
任何数的 次方都是
解题步骤 5.2.1.2
乘以
解题步骤 5.2.1.3
乘以
解题步骤 5.2.1.4
任何数的 次方都是
解题步骤 5.2.1.5
乘以
解题步骤 5.2.2
中减去
解题步骤 5.2.3
最终答案为
解题步骤 5.3
图像在区间 上向上凹,因为 为正数。
由于 为正,在 上为向上凹
由于 为正,在 上为向上凹
解题步骤 6
将区间 内的任意数代入二阶导数中并计算,以判断该函数的凹凸性。
点击获取更多步骤...
解题步骤 6.1
使用表达式中的 替换变量
解题步骤 6.2
化简结果。
点击获取更多步骤...
解题步骤 6.2.1
乘以
解题步骤 6.2.2
最终答案为
解题步骤 6.3
图像在区间 上向下凹,因为 为负数。
由于 为负,在 上为向下凹
由于 为负,在 上为向下凹
解题步骤 7
当函数的二阶导数为负数时,其图像向下凹,当其二阶导数为正数时,其图像向上凹。
由于 为正,在 上为向上凹
由于 为负,在 上为向下凹
解题步骤 8