微积分学 示例

求出临界点 e^x-x
解题步骤 1
求一阶导数。
点击获取更多步骤...
解题步骤 1.1
求一阶导数。
点击获取更多步骤...
解题步骤 1.1.1
根据加法法则, 的导数是
解题步骤 1.1.2
使用指数法则求微分,根据该法则, 等于 ,其中 =
解题步骤 1.1.3
计算
点击获取更多步骤...
解题步骤 1.1.3.1
因为 对于 是常数,所以 的导数是
解题步骤 1.1.3.2
使用幂法则求微分,根据该法则, 等于 ,其中
解题步骤 1.1.3.3
乘以
解题步骤 1.2
的一阶导数是
解题步骤 2
将一阶导数设为等于 ,然后求解方程
点击获取更多步骤...
解题步骤 2.1
将一阶导数设为等于
解题步骤 2.2
在等式两边都加上
解题步骤 2.3
取方程两边的自然对数从而去掉指数中的变量。
解题步骤 2.4
展开左边。
点击获取更多步骤...
解题步骤 2.4.1
通过将 移到对数外来展开
解题步骤 2.4.2
的自然对数为
解题步骤 2.4.3
乘以
解题步骤 2.5
的自然对数为
解题步骤 3
求使导数无意义的值。
点击获取更多步骤...
解题步骤 3.1
表达式的定义域是除使表达式无定义的值外的所有实数。在本例中,不存在使表达式无定义的实数。
解题步骤 4
对每个导数为 或无意义的 值,计算
点击获取更多步骤...
解题步骤 4.1
处计算
点击获取更多步骤...
解题步骤 4.1.1
代入 替换
解题步骤 4.1.2
化简。
点击获取更多步骤...
解题步骤 4.1.2.1
任何数的 次方都是
解题步骤 4.1.2.2
中减去
解题步骤 4.2
列出所有的点。
解题步骤 5