输入问题...
微积分学 示例
解题步骤 1
解题步骤 1.1
求一阶导数。
解题步骤 1.1.1
使用除法定则求微分,根据该法则, 等于 ,其中 且 。
解题步骤 1.1.2
求微分。
解题步骤 1.1.2.1
根据加法法则, 对 的导数是 。
解题步骤 1.1.2.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 1.1.2.3
因为 对于 是常数,所以 对 的导数为 。
解题步骤 1.1.2.4
化简表达式。
解题步骤 1.1.2.4.1
将 和 相加。
解题步骤 1.1.2.4.2
将 移到 的左侧。
解题步骤 1.1.2.5
根据加法法则, 对 的导数是 。
解题步骤 1.1.2.6
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 1.1.2.7
因为 对于 是常数,所以 对 的导数为 。
解题步骤 1.1.2.8
化简表达式。
解题步骤 1.1.2.8.1
将 和 相加。
解题步骤 1.1.2.8.2
将 乘以 。
解题步骤 1.1.3
化简。
解题步骤 1.1.3.1
运用分配律。
解题步骤 1.1.3.2
运用分配律。
解题步骤 1.1.3.3
运用分配律。
解题步骤 1.1.3.4
化简分子。
解题步骤 1.1.3.4.1
化简每一项。
解题步骤 1.1.3.4.1.1
通过指数相加将 乘以 。
解题步骤 1.1.3.4.1.1.1
移动 。
解题步骤 1.1.3.4.1.1.2
将 乘以 。
解题步骤 1.1.3.4.1.2
将 乘以 。
解题步骤 1.1.3.4.1.3
将 乘以 。
解题步骤 1.1.3.4.2
从 中减去 。
解题步骤 1.1.3.5
使用 AC 法来对 进行因式分解。
解题步骤 1.1.3.5.1
思考一下 这种形式。找出一对整数,其积为 ,且和为 。在本例中,其积即为 ,和为 。
解题步骤 1.1.3.5.2
使用这些整数书写分数形式。
解题步骤 1.2
对 的一阶导数是 。
解题步骤 2
解题步骤 2.1
将一阶导数设为等于 。
解题步骤 2.2
将分子设为等于零。
解题步骤 2.3
求解 的方程。
解题步骤 2.3.1
如果等式左侧的任一因数等于 ,则整个表达式将等于 。
解题步骤 2.3.2
将 设为等于 并求解 。
解题步骤 2.3.2.1
将 设为等于 。
解题步骤 2.3.2.2
在等式两边都加上 。
解题步骤 2.3.3
将 设为等于 并求解 。
解题步骤 2.3.3.1
将 设为等于 。
解题步骤 2.3.3.2
在等式两边都加上 。
解题步骤 2.3.4
最终解为使 成立的所有值。
解题步骤 3
解题步骤 3.1
将 的分母设为等于 ,以求使表达式无意义的区间。
解题步骤 3.2
求解 。
解题步骤 3.2.1
将 设为等于 。
解题步骤 3.2.2
在等式两边都加上 。
解题步骤 4
解题步骤 4.1
在 处计算
解题步骤 4.1.1
代入 替换 。
解题步骤 4.1.2
化简。
解题步骤 4.1.2.1
化简分子。
解题步骤 4.1.2.1.1
对 进行 次方运算。
解题步骤 4.1.2.1.2
从 中减去 。
解题步骤 4.1.2.2
化简表达式。
解题步骤 4.1.2.2.1
从 中减去 。
解题步骤 4.1.2.2.2
用 除以 。
解题步骤 4.2
在 处计算
解题步骤 4.2.1
代入 替换 。
解题步骤 4.2.2
化简。
解题步骤 4.2.2.1
化简分子。
解题步骤 4.2.2.1.1
一的任意次幂都为一。
解题步骤 4.2.2.1.2
从 中减去 。
解题步骤 4.2.2.2
化简表达式。
解题步骤 4.2.2.2.1
从 中减去 。
解题步骤 4.2.2.2.2
用 除以 。
解题步骤 4.3
在 处计算
解题步骤 4.3.1
代入 替换 。
解题步骤 4.3.2
化简。
解题步骤 4.3.2.1
从 中减去 。
解题步骤 4.3.2.2
该表达式包含分母 。该表达式无定义。
无定义
无定义
无定义
解题步骤 4.4
列出所有的点。
解题步骤 5