输入问题...
微积分学 示例
解题步骤 1
解题步骤 1.1
计算分子和分母的极限值。
解题步骤 1.1.1
取分子和分母极限值。
解题步骤 1.1.2
计算分子的极限值。
解题步骤 1.1.2.1
计算极限值。
解题步骤 1.1.2.1.1
把极限移到三角函数里,因为正弦是连续的。
解题步骤 1.1.2.1.2
因为项 对于 为常数,所以将其移动到极限外。
解题步骤 1.1.2.2
将 代入 来计算 的极限值。
解题步骤 1.1.2.3
化简答案。
解题步骤 1.1.2.3.1
将 乘以 。
解题步骤 1.1.2.3.2
的准确值为 。
解题步骤 1.1.3
计算分母的极限值。
解题步骤 1.1.3.1
使用极限幂法则把 的指数 移到极限外。
解题步骤 1.1.3.2
将 代入 来计算 的极限值。
解题步骤 1.1.3.3
对 进行任意正数次方的运算均得到 。
解题步骤 1.1.3.4
该表达式包含分母 。该表达式无定义。
无定义
解题步骤 1.1.4
该表达式包含分母 。该表达式无定义。
无定义
解题步骤 1.2
因为 是不定式,所以应该应用洛必达法则。洛必达法则表明,函数的商的极限等于它们导数的商的极限。
解题步骤 1.3
求分子和分母的导数。
解题步骤 1.3.1
对分子和分母进行求导。
解题步骤 1.3.2
使用链式法则求微分,根据该法则, 等于 ,其中 且 。
解题步骤 1.3.2.1
要使用链式法则,请将 设为 。
解题步骤 1.3.2.2
对 的导数为 。
解题步骤 1.3.2.3
使用 替换所有出现的 。
解题步骤 1.3.3
因为 对于 是常数,所以 对 的导数是 。
解题步骤 1.3.4
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 1.3.5
将 乘以 。
解题步骤 1.3.6
将 移到 的左侧。
解题步骤 1.3.7
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 1.4
约去 的公因数。
解题步骤 1.4.1
约去公因数。
解题步骤 1.4.2
重写表达式。
解题步骤 2
因为函数从左边趋于 且从右边趋于 ,所以极限不存在。