输入问题...
微积分学 示例
解题步骤 1
解题步骤 1.1
根据加法法则, 对 的导数是 。
解题步骤 1.2
计算 。
解题步骤 1.2.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 1.2.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 1.2.3
将 乘以 。
解题步骤 1.3
计算 。
解题步骤 1.3.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 1.3.2
将 重写为 。
解题步骤 1.3.3
使用链式法则求微分,根据该法则, 等于 ,其中 且 。
解题步骤 1.3.3.1
要使用链式法则,请将 设为 。
解题步骤 1.3.3.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 1.3.3.3
使用 替换所有出现的 。
解题步骤 1.3.4
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 1.3.5
将 中的指数相乘。
解题步骤 1.3.5.1
运用幂法则并将指数相乘,。
解题步骤 1.3.5.2
将 乘以 。
解题步骤 1.3.6
将 乘以 。
解题步骤 1.3.7
对 进行 次方运算。
解题步骤 1.3.8
使用幂法则 合并指数。
解题步骤 1.3.9
从 中减去 。
解题步骤 1.3.10
将 乘以 。
解题步骤 1.4
化简。
解题步骤 1.4.1
使用负指数规则 重写表达式。
解题步骤 1.4.2
组合 和 。
解题步骤 2
解题步骤 2.1
根据加法法则, 对 的导数是 。
解题步骤 2.2
计算 。
解题步骤 2.2.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 2.2.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 2.2.3
将 乘以 。
解题步骤 2.3
计算 。
解题步骤 2.3.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 2.3.2
将 重写为 。
解题步骤 2.3.3
使用链式法则求微分,根据该法则, 等于 ,其中 且 。
解题步骤 2.3.3.1
要使用链式法则,请将 设为 。
解题步骤 2.3.3.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 2.3.3.3
使用 替换所有出现的 。
解题步骤 2.3.4
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 2.3.5
将 中的指数相乘。
解题步骤 2.3.5.1
运用幂法则并将指数相乘,。
解题步骤 2.3.5.2
将 乘以 。
解题步骤 2.3.6
将 乘以 。
解题步骤 2.3.7
通过指数相加将 乘以 。
解题步骤 2.3.7.1
移动 。
解题步骤 2.3.7.2
使用幂法则 合并指数。
解题步骤 2.3.7.3
从 中减去 。
解题步骤 2.3.8
将 乘以 。
解题步骤 2.4
使用负指数规则 重写表达式。
解题步骤 2.5
化简。
解题步骤 2.5.1
合并项。
解题步骤 2.5.1.1
组合 和 。
解题步骤 2.5.1.2
将负号移到分数的前面。
解题步骤 2.5.2
重新排序项。
解题步骤 3
要求函数的极大值与极小值,请将导数设为等于 并求解。
解题步骤 4
因为 没有使一阶导数等于 的值,所以不存在局部极值。
不存在局部极值
解题步骤 5
不存在局部极值
解题步骤 6