输入问题...
微积分学 示例
解题步骤 1
将 书写为一个函数。
解题步骤 2
通过计算导数 的不定积分求函数 。
解题步骤 3
建立要求解的定积分。
解题步骤 4
将单个积分拆分为多个积分。
解题步骤 5
由于 对于 是常数,所以将 移到积分外。
解题步骤 6
根据幂法则, 对 的积分是 。
解题步骤 7
解题步骤 7.1
组合 和 。
解题步骤 7.2
使用负指数规则 将 移动到分母。
解题步骤 8
由于 对于 是常数,所以将 移到积分外。
解题步骤 9
根据幂法则, 对 的积分是 。
解题步骤 10
解题步骤 10.1
化简。
解题步骤 10.1.1
组合 和 。
解题步骤 10.1.2
使用负指数规则 将 移动到分母。
解题步骤 10.2
化简。
解题步骤 10.3
化简。
解题步骤 10.3.1
将负号移到分数的前面。
解题步骤 10.3.2
将 乘以 。
解题步骤 10.3.3
将 乘以 。
解题步骤 10.3.4
将 乘以 。
解题步骤 10.3.5
组合 和 。
解题步骤 10.3.6
约去 和 的公因数。
解题步骤 10.3.6.1
从 中分解出因数 。
解题步骤 10.3.6.2
约去公因数。
解题步骤 10.3.6.2.1
从 中分解出因数 。
解题步骤 10.3.6.2.2
约去公因数。
解题步骤 10.3.6.2.3
重写表达式。
解题步骤 10.3.7
将负号移到分数的前面。
解题步骤 11
答案是函数 的不定积分。