输入问题...
微积分学 示例
解题步骤 1
计算 的极限值,当 趋近于 时此极限值为常数。
解题步骤 2
解题步骤 2.1
化简分子。
解题步骤 2.1.1
将 重写为 。
解题步骤 2.1.2
因为两项都是完全平方数,所以使用平方差公式 进行因式分解,其中 和 。
解题步骤 2.2
分组因式分解。
解题步骤 2.2.1
对于 形式的多项式,将其中间项重写为两项之和,这两项的乘积为 并且它们的和为 。
解题步骤 2.2.1.1
从 中分解出因数 。
解题步骤 2.2.1.2
把 重写为 加
解题步骤 2.2.1.3
运用分配律。
解题步骤 2.2.1.4
将 乘以 。
解题步骤 2.2.2
从每组中因式分解出最大公因数。
解题步骤 2.2.2.1
将首两项和最后两项分成两组。
解题步骤 2.2.2.2
从每组中因式分解出最大公因数 (GCF)。
解题步骤 2.2.3
通过因式分解出最大公因数 来因式分解多项式。
解题步骤 2.3
约去 的公因数。
解题步骤 2.3.1
约去公因数。
解题步骤 2.3.2
重写表达式。