输入问题...
微积分学 示例
解题步骤 1
当 趋于 时,利用极限的加法法则来分解极限。
解题步骤 2
使用极限幂法则把 的指数 移到极限外。
解题步骤 3
因为项 对于 为常数,所以将其移动到极限外。
解题步骤 4
计算 的极限值,当 趋近于 时此极限值为常数。
解题步骤 5
解题步骤 5.1
将 代入 来计算 的极限值。
解题步骤 5.2
将 代入 来计算 的极限值。
解题步骤 6
解题步骤 6.1
化简分子。
解题步骤 6.1.1
对 进行 次方运算。
解题步骤 6.1.2
将 乘以 。
解题步骤 6.1.3
将 乘以 。
解题步骤 6.1.4
从 中减去 。
解题步骤 6.1.5
从 中减去 。
解题步骤 6.2
化简分母。
解题步骤 6.2.1
从 中分解出因数 。
解题步骤 6.2.1.1
从 中分解出因数 。
解题步骤 6.2.1.2
从 中分解出因数 。
解题步骤 6.2.1.3
从 中分解出因数 。
解题步骤 6.2.2
将 重写为 。
解题步骤 6.2.3
因为两项都是完全平方数,所以使用平方差公式 进行因式分解,其中 和 。
解题步骤 6.3
约去 和 的公因数。
解题步骤 6.3.1
从 中分解出因数 。
解题步骤 6.3.2
约去公因数。
解题步骤 6.3.2.1
从 中分解出因数 。
解题步骤 6.3.2.2
约去公因数。
解题步骤 6.3.2.3
重写表达式。