微积分学 示例

求出临界点 x^4-4x^3+10
解题步骤 1
求一阶导数。
点击获取更多步骤...
解题步骤 1.1
求一阶导数。
点击获取更多步骤...
解题步骤 1.1.1
求微分。
点击获取更多步骤...
解题步骤 1.1.1.1
根据加法法则, 的导数是
解题步骤 1.1.1.2
使用幂法则求微分,根据该法则, 等于 ,其中
解题步骤 1.1.2
计算
点击获取更多步骤...
解题步骤 1.1.2.1
因为 对于 是常数,所以 的导数是
解题步骤 1.1.2.2
使用幂法则求微分,根据该法则, 等于 ,其中
解题步骤 1.1.2.3
乘以
解题步骤 1.1.3
使用常数法则求导。
点击获取更多步骤...
解题步骤 1.1.3.1
因为 对于 是常数,所以 的导数为
解题步骤 1.1.3.2
相加。
解题步骤 1.2
的一阶导数是
解题步骤 2
将一阶导数设为等于 ,然后求解方程
点击获取更多步骤...
解题步骤 2.1
将一阶导数设为等于
解题步骤 2.2
中分解出因数
点击获取更多步骤...
解题步骤 2.2.1
中分解出因数
解题步骤 2.2.2
中分解出因数
解题步骤 2.2.3
中分解出因数
解题步骤 2.3
如果等式左侧的任一因数等于 ,则整个表达式将等于
解题步骤 2.4
设为等于 并求解
点击获取更多步骤...
解题步骤 2.4.1
设为等于
解题步骤 2.4.2
求解
点击获取更多步骤...
解题步骤 2.4.2.1
取方程两边的指定根来消去方程左边的指数。
解题步骤 2.4.2.2
化简
点击获取更多步骤...
解题步骤 2.4.2.2.1
重写为
解题步骤 2.4.2.2.2
假设各项均为正实数,从根式下提出各项。
解题步骤 2.4.2.2.3
正负
解题步骤 2.5
设为等于 并求解
点击获取更多步骤...
解题步骤 2.5.1
设为等于
解题步骤 2.5.2
在等式两边都加上
解题步骤 2.6
最终解为使 成立的所有值。
解题步骤 3
求使导数无意义的值。
点击获取更多步骤...
解题步骤 3.1
表达式的定义域是除使表达式无定义的值外的所有实数。在本例中,不存在使表达式无定义的实数。
解题步骤 4
对每个导数为 或无意义的 值,计算
点击获取更多步骤...
解题步骤 4.1
处计算
点击获取更多步骤...
解题步骤 4.1.1
代入 替换
解题步骤 4.1.2
化简。
点击获取更多步骤...
解题步骤 4.1.2.1
化简每一项。
点击获取更多步骤...
解题步骤 4.1.2.1.1
进行任意正数次方的运算均得到
解题步骤 4.1.2.1.2
进行任意正数次方的运算均得到
解题步骤 4.1.2.1.3
乘以
解题步骤 4.1.2.2
通过加上各数进行化简。
点击获取更多步骤...
解题步骤 4.1.2.2.1
相加。
解题步骤 4.1.2.2.2
相加。
解题步骤 4.2
处计算
点击获取更多步骤...
解题步骤 4.2.1
代入 替换
解题步骤 4.2.2
化简。
点击获取更多步骤...
解题步骤 4.2.2.1
化简每一项。
点击获取更多步骤...
解题步骤 4.2.2.1.1
进行 次方运算。
解题步骤 4.2.2.1.2
进行 次方运算。
解题步骤 4.2.2.1.3
乘以
解题步骤 4.2.2.2
通过相加和相减进行化简。
点击获取更多步骤...
解题步骤 4.2.2.2.1
中减去
解题步骤 4.2.2.2.2
相加。
解题步骤 4.3
列出所有的点。
解题步骤 5