输入问题...
微积分学 示例
解题步骤 1
将 书写为一个函数。
解题步骤 2
解题步骤 2.1
求二阶导数。
解题步骤 2.1.1
求一阶导数。
解题步骤 2.1.1.1
使用乘积法则求微分,根据该法则, 等于 ,其中 且 。
解题步骤 2.1.1.2
对 的导数为 。
解题步骤 2.1.1.3
使用幂法则求微分。
解题步骤 2.1.1.3.1
组合 和 。
解题步骤 2.1.1.3.2
约去 和 的公因数。
解题步骤 2.1.1.3.2.1
从 中分解出因数 。
解题步骤 2.1.1.3.2.2
约去公因数。
解题步骤 2.1.1.3.2.2.1
对 进行 次方运算。
解题步骤 2.1.1.3.2.2.2
从 中分解出因数 。
解题步骤 2.1.1.3.2.2.3
约去公因数。
解题步骤 2.1.1.3.2.2.4
重写表达式。
解题步骤 2.1.1.3.2.2.5
用 除以 。
解题步骤 2.1.1.3.3
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 2.1.1.3.4
重新排序项。
解题步骤 2.1.2
求二阶导数。
解题步骤 2.1.2.1
求微分。
解题步骤 2.1.2.1.1
根据加法法则, 对 的导数是 。
解题步骤 2.1.2.1.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 2.1.2.2
计算 。
解题步骤 2.1.2.2.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 2.1.2.2.2
使用乘积法则求微分,根据该法则, 等于 ,其中 且 。
解题步骤 2.1.2.2.3
对 的导数为 。
解题步骤 2.1.2.2.4
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 2.1.2.2.5
组合 和 。
解题步骤 2.1.2.2.6
约去 和 的公因数。
解题步骤 2.1.2.2.6.1
从 中分解出因数 。
解题步骤 2.1.2.2.6.2
约去公因数。
解题步骤 2.1.2.2.6.2.1
对 进行 次方运算。
解题步骤 2.1.2.2.6.2.2
从 中分解出因数 。
解题步骤 2.1.2.2.6.2.3
约去公因数。
解题步骤 2.1.2.2.6.2.4
重写表达式。
解题步骤 2.1.2.2.6.2.5
用 除以 。
解题步骤 2.1.2.3
化简。
解题步骤 2.1.2.3.1
运用分配律。
解题步骤 2.1.2.3.2
合并项。
解题步骤 2.1.2.3.2.1
将 乘以 。
解题步骤 2.1.2.3.2.2
将 和 相加。
解题步骤 2.1.2.3.3
重新排序项。
解题步骤 2.1.3
对 的二阶导数是 。
解题步骤 2.2
使二阶导数等于 ,然后求解方程 。
解题步骤 2.2.1
将二阶导数设为等于 。
解题步骤 2.2.2
从等式两边同时减去 。
解题步骤 2.2.3
将 中的每一项除以 并化简。
解题步骤 2.2.3.1
将 中的每一项都除以 。
解题步骤 2.2.3.2
化简左边。
解题步骤 2.2.3.2.1
约去 的公因数。
解题步骤 2.2.3.2.1.1
约去公因数。
解题步骤 2.2.3.2.1.2
重写表达式。
解题步骤 2.2.3.2.2
约去 的公因数。
解题步骤 2.2.3.2.2.1
约去公因数。
解题步骤 2.2.3.2.2.2
用 除以 。
解题步骤 2.2.3.3
化简右边。
解题步骤 2.2.3.3.1
约去 的公因数。
解题步骤 2.2.3.3.1.1
约去公因数。
解题步骤 2.2.3.3.1.2
重写表达式。
解题步骤 2.2.3.3.2
将负号移到分数的前面。
解题步骤 2.2.4
要求解 ,请利用对数的性质重写方程。
解题步骤 2.2.5
使用对数的定义将 重写成指数形式。如果 和 是正实数且 ,则 等价于 。
解题步骤 2.2.6
求解 。
解题步骤 2.2.6.1
将方程重写为 。
解题步骤 2.2.6.2
使用负指数规则 重写表达式。
解题步骤 3
解题步骤 3.1
将 中的参数设为大于 ,以求使表达式有意义的区间。
解题步骤 3.2
定义域为使表达式有定义的所有值 。
区间计数法:
集合符号:
区间计数法:
集合符号:
解题步骤 4
在二阶导数为零或无意义的 值附近建立区间。
解题步骤 5
解题步骤 5.1
使用表达式中的 替换变量 。
解题步骤 5.2
化简结果。
解题步骤 5.2.1
化简每一项。
解题步骤 5.2.1.1
对 进行 次方运算。
解题步骤 5.2.1.2
将 乘以 。
解题步骤 5.2.1.3
对 进行 次方运算。
解题步骤 5.2.1.4
将 乘以 。
解题步骤 5.2.1.5
通过将 ( RATIONALNUMBER1) 移入对数中来化简 。
解题步骤 5.2.1.6
对 进行 次方运算。
解题步骤 5.2.2
将 和 相加。
解题步骤 5.2.3
最终答案为 。
解题步骤 5.3
图像在区间 上向下凹,因为 为负数。
由于 为负,在 上为向下凹
由于 为负,在 上为向下凹
解题步骤 6
解题步骤 6.1
使用表达式中的 替换变量 。
解题步骤 6.2
化简结果。
解题步骤 6.2.1
化简每一项。
解题步骤 6.2.1.1
对 进行 次方运算。
解题步骤 6.2.1.2
将 乘以 。
解题步骤 6.2.1.3
对 进行 次方运算。
解题步骤 6.2.1.4
将 乘以 。
解题步骤 6.2.1.5
通过将 ( RATIONALNUMBER1) 移入对数中来化简 。
解题步骤 6.2.2
最终答案为 。
解题步骤 6.3
图像在区间 上向上凹,因为 为正数。
由于 为正,在 上为向上凹
由于 为正,在 上为向上凹
解题步骤 7
当函数的二阶导数为负数时,其图像向下凹,当其二阶导数为正数时,其图像向上凹。
由于 为负,在 上为向下凹
由于 为正,在 上为向上凹
解题步骤 8