输入问题...
微积分学 示例
f(x)=sin(x)x+|sin(x)|x
解题步骤 1
根据加法法则,sin(x)x+|sin(x)|x 对 x 的导数是 ddx[sin(x)x]+ddx[|sin(x)|x]。
ddx[sin(x)x]+ddx[|sin(x)|x]
解题步骤 2
解题步骤 2.1
使用除法定则求微分,根据该法则,ddx[f(x)g(x)] 等于 g(x)ddx[f(x)]-f(x)ddx[g(x)]g(x)2,其中 f(x)=sin(x) 且 g(x)=x。
xddx[sin(x)]-sin(x)ddx[x]x2+ddx[|sin(x)|x]
解题步骤 2.2
sin(x) 对 x 的导数为 cos(x)。
xcos(x)-sin(x)ddx[x]x2+ddx[|sin(x)|x]
解题步骤 2.3
使用幂法则求微分,根据该法则,ddx[xn] 等于 nxn-1,其中 n=1。
xcos(x)-sin(x)⋅1x2+ddx[|sin(x)|x]
解题步骤 2.4
将 -1 乘以 1。
xcos(x)-sin(x)x2+ddx[|sin(x)|x]
xcos(x)-sin(x)x2+ddx[|sin(x)|x]
解题步骤 3
解题步骤 3.1
使用除法定则求微分,根据该法则,ddx[f(x)g(x)] 等于 g(x)ddx[f(x)]-f(x)ddx[g(x)]g(x)2,其中 f(x)=|sin(x)| 且 g(x)=x。
xcos(x)-sin(x)x2+xddx[|sin(x)|]-|sin(x)|ddx[x]x2
解题步骤 3.2
使用链式法则求微分,根据该法则,ddx[f(g(x))] 等于 f′(g(x))g′(x),其中 f(x)=|x| 且 g(x)=sin(x)。
解题步骤 3.2.1
要使用链式法则,请将 u 设为 sin(x)。
xcos(x)-sin(x)x2+x(ddu[|u|]ddx[sin(x)])-|sin(x)|ddx[x]x2
解题步骤 3.2.2
|u| 对 u 的导数为 u|u|。
xcos(x)-sin(x)x2+x(u|u|ddx[sin(x)])-|sin(x)|ddx[x]x2
解题步骤 3.2.3
使用 sin(x) 替换所有出现的 u。
xcos(x)-sin(x)x2+x(sin(x)|sin(x)|ddx[sin(x)])-|sin(x)|ddx[x]x2
xcos(x)-sin(x)x2+x(sin(x)|sin(x)|ddx[sin(x)])-|sin(x)|ddx[x]x2
解题步骤 3.3
sin(x) 对 x 的导数为 cos(x)。
xcos(x)-sin(x)x2+x(sin(x)|sin(x)|cos(x))-|sin(x)|ddx[x]x2
解题步骤 3.4
使用幂法则求微分,根据该法则,ddx[xn] 等于 nxn-1,其中 n=1。
xcos(x)-sin(x)x2+x(sin(x)|sin(x)|cos(x))-|sin(x)|⋅1x2
解题步骤 3.5
组合 sin(x)|sin(x)| 和 cos(x)。
xcos(x)-sin(x)x2+xsin(x)cos(x)|sin(x)|-|sin(x)|⋅1x2
解题步骤 3.6
组合 x 和 sin(x)cos(x)|sin(x)|。
xcos(x)-sin(x)x2+x(sin(x)cos(x))|sin(x)|-|sin(x)|⋅1x2
解题步骤 3.7
将 -1 乘以 1。
xcos(x)-sin(x)x2+x(sin(x)cos(x))|sin(x)|-|sin(x)|x2
解题步骤 3.8
将 x(sin(x)cos(x))|sin(x)|-|sin(x)|x2 乘以 |sin(x)||sin(x)|。
xcos(x)-sin(x)x2+|sin(x)||sin(x)|⋅x(sin(x)cos(x))|sin(x)|-|sin(x)|x2
解题步骤 3.9
合并。
xcos(x)-sin(x)x2+|sin(x)|(x(sin(x)cos(x))|sin(x)|-|sin(x)|)|sin(x)|x2
解题步骤 3.10
运用分配律。
xcos(x)-sin(x)x2+|sin(x)|x(sin(x)cos(x))|sin(x)|+|sin(x)|(-|sin(x)|)|sin(x)|x2
解题步骤 3.11
约去 |sin(x)| 的公因数。
解题步骤 3.11.1
约去公因数。
xcos(x)-sin(x)x2+|sin(x)|x(sin(x)cos(x))|sin(x)|+|sin(x)|(-|sin(x)|)|sin(x)|x2
解题步骤 3.11.2
重写表达式。
xcos(x)-sin(x)x2+x(sin(x)cos(x))+|sin(x)|(-|sin(x)|)|sin(x)|x2
xcos(x)-sin(x)x2+x(sin(x)cos(x))+|sin(x)|(-|sin(x)|)|sin(x)|x2
解题步骤 3.12
要将绝对值相乘,请将每个绝对值内的项相乘。
xcos(x)-sin(x)x2+x(sin(x)cos(x))-|sin(x)sin(x)||sin(x)|x2
解题步骤 3.13
对 sin(x) 进行 1 次方运算。
xcos(x)-sin(x)x2+x(sin(x)cos(x))-|sin1(x)sin(x)||sin(x)|x2
解题步骤 3.14
对 sin(x) 进行 1 次方运算。
xcos(x)-sin(x)x2+x(sin(x)cos(x))-|sin1(x)sin1(x)||sin(x)|x2
解题步骤 3.15
使用幂法则 aman=am+n 合并指数。
xcos(x)-sin(x)x2+x(sin(x)cos(x))-|sin(x)1+1||sin(x)|x2
解题步骤 3.16
将 1 和 1 相加。
xcos(x)-sin(x)x2+x(sin(x)cos(x))-|sin2(x)||sin(x)|x2
xcos(x)-sin(x)x2+x(sin(x)cos(x))-|sin2(x)||sin(x)|x2
解题步骤 4
解题步骤 4.1
合并项。
解题步骤 4.1.1
要将 xcos(x)-sin(x)x2 写成带有公分母的分数,请乘以 |sin(x)||sin(x)|。
xcos(x)-sin(x)x2⋅|sin(x)||sin(x)|+x(sin(x)cos(x))-|sin2(x)||sin(x)|x2
解题步骤 4.1.2
通过与 1 的合适因数相乘,将每一个表达式写成具有公分母 |sin(x)|x2 的形式。
解题步骤 4.1.2.1
将 xcos(x)-sin(x)x2 乘以 |sin(x)||sin(x)|。
(xcos(x)-sin(x))|sin(x)|x2|sin(x)|+x(sin(x)cos(x))-|sin2(x)||sin(x)|x2
解题步骤 4.1.2.2
重新排序 |sin(x)|x2 的因式。
(xcos(x)-sin(x))|sin(x)|x2|sin(x)|+x(sin(x)cos(x))-|sin2(x)|x2|sin(x)|
(xcos(x)-sin(x))|sin(x)|x2|sin(x)|+x(sin(x)cos(x))-|sin2(x)|x2|sin(x)|
解题步骤 4.1.3
在公分母上合并分子。
(xcos(x)-sin(x))|sin(x)|+x(sin(x)cos(x))-|sin2(x)|x2|sin(x)|
(xcos(x)-sin(x))|sin(x)|+x(sin(x)cos(x))-|sin2(x)|x2|sin(x)|
解题步骤 4.2
重新排序项。
|sin(x)|(xcos(x)-sin(x))+xcos(x)sin(x)-|sin2(x)|x2|sin(x)|
解题步骤 4.3
化简分子。
解题步骤 4.3.1
运用分配律。
|sin(x)|(xcos(x))+|sin(x)|(-sin(x))+xcos(x)sin(x)-|sin2(x)|x2|sin(x)|
解题步骤 4.3.2
使用乘法的交换性质重写。
|sin(x)|xcos(x)-|sin(x)|sin(x)+xcos(x)sin(x)-|sin2(x)|x2|sin(x)|
解题步骤 4.3.3
从绝对值中去掉非负项。
|sin(x)|xcos(x)-|sin(x)|sin(x)+xcos(x)sin(x)-sin2(x)x2|sin(x)|
解题步骤 4.3.4
以因式分解的形式重写 |sin(x)|xcos(x)-|sin(x)|sin(x)+xcos(x)sin(x)-sin2(x)。
解题步骤 4.3.4.1
重新排序项。
x|sin(x)|cos(x)-|sin(x)|sin(x)+xcos(x)sin(x)-sin2(x)x2|sin(x)|
解题步骤 4.3.4.2
从每组中因式分解出最大公因数。
解题步骤 4.3.4.2.1
将首两项和最后两项分成两组。
(x|sin(x)|cos(x)-|sin(x)|sin(x))+xcos(x)sin(x)-sin2(x)x2|sin(x)|
解题步骤 4.3.4.2.2
从每组中因式分解出最大公因数 (GCF)。
|sin(x)|(xcos(x)-sin(x))+sin(x)(xcos(x)-sin(x))x2|sin(x)|
|sin(x)|(xcos(x)-sin(x))+sin(x)(xcos(x)-sin(x))x2|sin(x)|
解题步骤 4.3.4.3
通过因式分解出最大公因数 xcos(x)-sin(x) 来因式分解多项式。
(xcos(x)-sin(x))(|sin(x)|+sin(x))x2|sin(x)|
(xcos(x)-sin(x))(|sin(x)|+sin(x))x2|sin(x)|
(xcos(x)-sin(x))(|sin(x)|+sin(x))x2|sin(x)|
(xcos(x)-sin(x))(|sin(x)|+sin(x))x2|sin(x)|