微积分学 示例

dS/dA ज्ञात करें s=330A-0.20A^3
解题步骤 1
在等式两边同时取微分
解题步骤 2
因为 对于 是常数,所以 的导数为
解题步骤 3
对方程右边求微分。
点击获取更多步骤...
解题步骤 3.1
根据加法法则, 的导数是
解题步骤 3.2
计算
点击获取更多步骤...
解题步骤 3.2.1
因为 对于 是常数,所以 的导数是
解题步骤 3.2.2
使用幂法则求微分,根据该法则, 等于 ,其中
解题步骤 3.2.3
乘以
解题步骤 3.3
计算
点击获取更多步骤...
解题步骤 3.3.1
因为 对于 是常数,所以 的导数是
解题步骤 3.3.2
使用幂法则求微分,根据该法则, 等于 ,其中
解题步骤 3.3.3
乘以
解题步骤 3.4
重新排序项。
解题步骤 4
通过设置方程左边等于右边来进行方程变形。
解题步骤 5
求解
点击获取更多步骤...
解题步骤 5.1
因为 在方程的右边,所以要交换两边使其出现在方程的左边。
解题步骤 5.2
从等式两边同时减去
解题步骤 5.3
中的每一项除以 并化简。
点击获取更多步骤...
解题步骤 5.3.1
中的每一项都除以
解题步骤 5.3.2
化简左边。
点击获取更多步骤...
解题步骤 5.3.2.1
约去 的公因数。
点击获取更多步骤...
解题步骤 5.3.2.1.1
约去公因数。
解题步骤 5.3.2.1.2
除以
解题步骤 5.3.3
化简右边。
点击获取更多步骤...
解题步骤 5.3.3.1
除以
解题步骤 5.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
解题步骤 5.5
化简
点击获取更多步骤...
解题步骤 5.5.1
重写为
点击获取更多步骤...
解题步骤 5.5.1.1
中分解出因数
解题步骤 5.5.1.2
重写为
解题步骤 5.5.2
从根式下提出各项。
解题步骤 5.6
完全解为同时包括解的正数和负数部分的结果。
点击获取更多步骤...
解题步骤 5.6.1
首先,利用 的正值求第一个解。
解题步骤 5.6.2
下一步,使用 的负值来求第二个解。
解题步骤 5.6.3
完全解为同时包括解的正数和负数部分的结果。
解题步骤 6
使用 替换
解题步骤 7
结果可以多种形式表示。
恰当形式:
小数形式: