输入问题...
微积分学 示例
解题步骤 1
解题步骤 1.1
根据加法法则, 对 的导数是 。
解题步骤 1.2
计算 。
解题步骤 1.2.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 1.2.2
对 的导数为 。
解题步骤 1.3
计算 。
解题步骤 1.3.1
使用链式法则求微分,根据该法则, 等于 ,其中 且 。
解题步骤 1.3.1.1
要使用链式法则,请将 设为 。
解题步骤 1.3.1.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 1.3.1.3
使用 替换所有出现的 。
解题步骤 1.3.2
对 的导数为 。
解题步骤 1.4
化简。
解题步骤 1.4.1
重新排序项。
解题步骤 1.4.2
化简每一项。
解题步骤 1.4.2.1
将 和 重新排序。
解题步骤 1.4.2.2
将 和 重新排序。
解题步骤 1.4.2.3
使用正弦倍角公式。
解题步骤 2
解题步骤 2.1
使用正弦倍角公式。
解题步骤 2.2
从 中分解出因数 。
解题步骤 2.2.1
从 中分解出因数 。
解题步骤 2.2.2
从 中分解出因数 。
解题步骤 2.2.3
从 中分解出因数 。
解题步骤 2.3
如果等式左侧的任一因数等于 ,则整个表达式将等于 。
解题步骤 2.4
将 设为等于 并求解 。
解题步骤 2.4.1
将 设为等于 。
解题步骤 2.4.2
求解 的 。
解题步骤 2.4.2.1
取方程两边的逆余弦从而提取余弦内的 。
解题步骤 2.4.2.2
化简右边。
解题步骤 2.4.2.2.1
的准确值为 。
解题步骤 2.4.2.3
余弦函数在第一象限和第四象限恒为正。要求第二个解,从 中减去参考角即可求出第四象限中的解。
解题步骤 2.4.2.4
化简 。
解题步骤 2.4.2.4.1
要将 写成带有公分母的分数,请乘以 。
解题步骤 2.4.2.4.2
合并分数。
解题步骤 2.4.2.4.2.1
组合 和 。
解题步骤 2.4.2.4.2.2
在公分母上合并分子。
解题步骤 2.4.2.4.3
化简分子。
解题步骤 2.4.2.4.3.1
将 乘以 。
解题步骤 2.4.2.4.3.2
从 中减去 。
解题步骤 2.4.2.5
求 的周期。
解题步骤 2.4.2.5.1
函数的周期可利用 进行计算。
解题步骤 2.4.2.5.2
使用周期公式中的 替换 。
解题步骤 2.4.2.5.3
绝对值就是一个数和零之间的距离。 和 之间的距离为 。
解题步骤 2.4.2.5.4
用 除以 。
解题步骤 2.4.2.6
函数的周期为 ,所以函数值在两个方向上每隔 弧度将重复出现。
,对于任意整数
,对于任意整数
,对于任意整数
解题步骤 2.5
将 设为等于 并求解 。
解题步骤 2.5.1
将 设为等于 。
解题步骤 2.5.2
求解 的 。
解题步骤 2.5.2.1
从等式两边同时减去 。
解题步骤 2.5.2.2
取方程两边的逆正弦从而提取正弦内的 。
解题步骤 2.5.2.3
化简右边。
解题步骤 2.5.2.3.1
的准确值为 。
解题步骤 2.5.2.4
正弦函数在第三和第四象限中为负值。若要求第二个解,可从 减去这个解,从而求参考角。接着,将该参考角和 相加以求第三象限中的解。
解题步骤 2.5.2.5
化简表达式以求第二个解。
解题步骤 2.5.2.5.1
从 中减去 。
解题步骤 2.5.2.5.2
得出的角 是正角度,比 小,且与 共边。
解题步骤 2.5.2.6
求 的周期。
解题步骤 2.5.2.6.1
函数的周期可利用 进行计算。
解题步骤 2.5.2.6.2
使用周期公式中的 替换 。
解题步骤 2.5.2.6.3
绝对值就是一个数和零之间的距离。 和 之间的距离为 。
解题步骤 2.5.2.6.4
用 除以 。
解题步骤 2.5.2.7
将 和每一个负角相加以得出正角。
解题步骤 2.5.2.7.1
将 加到 以求正角。
解题步骤 2.5.2.7.2
要将 写成带有公分母的分数,请乘以 。
解题步骤 2.5.2.7.3
合并分数。
解题步骤 2.5.2.7.3.1
组合 和 。
解题步骤 2.5.2.7.3.2
在公分母上合并分子。
解题步骤 2.5.2.7.4
化简分子。
解题步骤 2.5.2.7.4.1
将 乘以 。
解题步骤 2.5.2.7.4.2
从 中减去 。
解题步骤 2.5.2.7.5
列出新角。
解题步骤 2.5.2.8
函数的周期为 ,所以函数值在两个方向上每隔 弧度将重复出现。
,对于任意整数
,对于任意整数
,对于任意整数
解题步骤 2.6
最终解为使 成立的所有值。
,对于任意整数
解题步骤 2.7
合并答案。
,对于任意整数
,对于任意整数
解题步骤 3
解题步骤 3.1
使用表达式中的 替换变量 。
解题步骤 3.2
化简结果。
解题步骤 3.2.1
化简每一项。
解题步骤 3.2.1.1
的准确值为 。
解题步骤 3.2.1.2
将 乘以 。
解题步骤 3.2.1.3
的准确值为 。
解题步骤 3.2.1.4
一的任意次幂都为一。
解题步骤 3.2.2
将 和 相加。
解题步骤 3.2.3
最终答案为 。
解题步骤 4
解题步骤 4.1
使用表达式中的 替换变量 。
解题步骤 4.2
化简结果。
解题步骤 4.2.1
化简每一项。
解题步骤 4.2.1.1
要将 写成带有公分母的分数,请乘以 。
解题步骤 4.2.1.2
组合 和 。
解题步骤 4.2.1.3
在公分母上合并分子。
解题步骤 4.2.1.4
化简分子。
解题步骤 4.2.1.4.1
将 移到 的左侧。
解题步骤 4.2.1.4.2
将 和 相加。
解题步骤 4.2.1.5
在第一象限中找出三角函数值与之相等的角,并使用这一参考角。令表达式取负值,因为正弦在第四象限为负。
解题步骤 4.2.1.6
的准确值为 。
解题步骤 4.2.1.7
乘以 。
解题步骤 4.2.1.7.1
将 乘以 。
解题步骤 4.2.1.7.2
将 乘以 。
解题步骤 4.2.1.8
要将 写成带有公分母的分数,请乘以 。
解题步骤 4.2.1.9
组合 和 。
解题步骤 4.2.1.10
在公分母上合并分子。
解题步骤 4.2.1.11
化简分子。
解题步骤 4.2.1.11.1
将 移到 的左侧。
解题步骤 4.2.1.11.2
将 和 相加。
解题步骤 4.2.1.12
在第一象限中找出三角函数值与之相等的角,并使用这一参考角。令表达式取负值,因为正弦在第四象限为负。
解题步骤 4.2.1.13
的准确值为 。
解题步骤 4.2.1.14
将 乘以 。
解题步骤 4.2.1.15
对 进行 次方运算。
解题步骤 4.2.2
将 和 相加。
解题步骤 4.2.3
最终答案为 。
解题步骤 5
函数 的水平切线为 。
解题步骤 6