微积分学 示例

求出水平正切线 f(x)=xe^(-x)
解题步骤 1
求导数。
点击获取更多步骤...
解题步骤 1.1
使用乘积法则求微分,根据该法则, 等于 ,其中
解题步骤 1.2
使用链式法则求微分,根据该法则, 等于 ,其中
点击获取更多步骤...
解题步骤 1.2.1
要使用链式法则,请将 设为
解题步骤 1.2.2
使用指数法则求微分,根据该法则, 等于 ,其中 =
解题步骤 1.2.3
使用 替换所有出现的
解题步骤 1.3
求微分。
点击获取更多步骤...
解题步骤 1.3.1
因为 对于 是常数,所以 的导数是
解题步骤 1.3.2
使用幂法则求微分,根据该法则, 等于 ,其中
解题步骤 1.3.3
化简表达式。
点击获取更多步骤...
解题步骤 1.3.3.1
乘以
解题步骤 1.3.3.2
移到 的左侧。
解题步骤 1.3.3.3
重写为
解题步骤 1.3.4
使用幂法则求微分,根据该法则, 等于 ,其中
解题步骤 1.3.5
乘以
解题步骤 1.4
化简。
点击获取更多步骤...
解题步骤 1.4.1
重新排序项。
解题步骤 1.4.2
中的因式重新排序。
解题步骤 2
使导数等于 ,然后求解方程
点击获取更多步骤...
解题步骤 2.1
中分解出因数
点击获取更多步骤...
解题步骤 2.1.1
中分解出因数
解题步骤 2.1.2
乘以
解题步骤 2.1.3
中分解出因数
解题步骤 2.2
如果等式左侧的任一因数等于 ,则整个表达式将等于
解题步骤 2.3
设为等于 并求解
点击获取更多步骤...
解题步骤 2.3.1
设为等于
解题步骤 2.3.2
求解
点击获取更多步骤...
解题步骤 2.3.2.1
取方程两边的自然对数从而去掉指数中的变量。
解题步骤 2.3.2.2
因为 无意义,所以方程无解。
无定义
解题步骤 2.3.2.3
无解
无解
无解
无解
解题步骤 2.4
设为等于 并求解
点击获取更多步骤...
解题步骤 2.4.1
设为等于
解题步骤 2.4.2
求解
点击获取更多步骤...
解题步骤 2.4.2.1
从等式两边同时减去
解题步骤 2.4.2.2
中的每一项除以 并化简。
点击获取更多步骤...
解题步骤 2.4.2.2.1
中的每一项都除以
解题步骤 2.4.2.2.2
化简左边。
点击获取更多步骤...
解题步骤 2.4.2.2.2.1
将两个负数相除得到一个正数。
解题步骤 2.4.2.2.2.2
除以
解题步骤 2.4.2.2.3
化简右边。
点击获取更多步骤...
解题步骤 2.4.2.2.3.1
除以
解题步骤 2.5
最终解为使 成立的所有值。
解题步骤 3
求在 处的原函数
点击获取更多步骤...
解题步骤 3.1
使用表达式中的 替换变量
解题步骤 3.2
化简结果。
点击获取更多步骤...
解题步骤 3.2.1
乘以
解题步骤 3.2.2
乘以
解题步骤 3.2.3
使用负指数规则 重写表达式。
解题步骤 3.2.4
最终答案为
解题步骤 4
函数 的水平切线为
解题步骤 5