微积分学 示例

求出水平正切线 y=sec(x)
解题步骤 1
表示成 的函数。
解题步骤 2
的导数为
解题步骤 3
使导数等于 ,然后求解方程
点击获取更多步骤...
解题步骤 3.1
如果等式左侧的任一因数等于 ,则整个表达式将等于
解题步骤 3.2
设为等于 并求解
点击获取更多步骤...
解题步骤 3.2.1
设为等于
解题步骤 3.2.2
正割函数的值域为 。因为 不在该值域内,所以无解。
无解
无解
解题步骤 3.3
设为等于 并求解
点击获取更多步骤...
解题步骤 3.3.1
设为等于
解题步骤 3.3.2
求解
点击获取更多步骤...
解题步骤 3.3.2.1
取方程两边的逆正切从而提取正切内的
解题步骤 3.3.2.2
化简右边。
点击获取更多步骤...
解题步骤 3.3.2.2.1
的准确值为
解题步骤 3.3.2.3
正切函数在第一和第三象限为正值。要求第二个解,加上来自 的参考角以求第四象限中的解。
解题步骤 3.3.2.4
相加。
解题步骤 3.3.2.5
的周期。
点击获取更多步骤...
解题步骤 3.3.2.5.1
函数的周期可利用 进行计算。
解题步骤 3.3.2.5.2
使用周期公式中的 替换
解题步骤 3.3.2.5.3
绝对值就是一个数和零之间的距离。 之间的距离为
解题步骤 3.3.2.5.4
除以
解题步骤 3.3.2.6
函数的周期为 ,所以函数值在两个方向上每隔 弧度将重复出现。
,对于任意整数
,对于任意整数
,对于任意整数
解题步骤 3.4
最终解为使 成立的所有值。
,对于任意整数
解题步骤 3.5
合并答案。
,对于任意整数
,对于任意整数
解题步骤 4
求在 处的原函数
点击获取更多步骤...
解题步骤 4.1

解题步骤 4.2
化简结果。
点击获取更多步骤...
解题步骤 4.2.1
在第一象限中找出三角函数值与之相等的角,并使用这一参考角。令表达式取负值,因为正切在第二象限为负。
解题步骤 4.2.2
的准确值为
解题步骤 4.2.3
乘以
解题步骤 4.2.4
最终答案为
解题步骤 5
函数 的水平切线为
解题步骤 6