输入问题...
微积分学 示例
解题步骤 1
解题步骤 1.1
求一阶导数。
解题步骤 1.1.1
使用常数相乘法则求微分。
解题步骤 1.1.1.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 1.1.1.2
将 重写为 。
解题步骤 1.1.2
使用链式法则求微分,根据该法则, 等于 ,其中 且 。
解题步骤 1.1.2.1
要使用链式法则,请将 设为 。
解题步骤 1.1.2.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 1.1.2.3
使用 替换所有出现的 。
解题步骤 1.1.3
求微分。
解题步骤 1.1.3.1
将 乘以 。
解题步骤 1.1.3.2
根据加法法则, 对 的导数是 。
解题步骤 1.1.3.3
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 1.1.3.4
因为 对于 是常数,所以 对 的导数为 。
解题步骤 1.1.3.5
化简表达式。
解题步骤 1.1.3.5.1
将 和 相加。
解题步骤 1.1.3.5.2
将 乘以 。
解题步骤 1.1.4
化简。
解题步骤 1.1.4.1
使用负指数规则 重写表达式。
解题步骤 1.1.4.2
合并项。
解题步骤 1.1.4.2.1
组合 和 。
解题步骤 1.1.4.2.2
将负号移到分数的前面。
解题步骤 1.2
对 的一阶导数是 。
解题步骤 2
解题步骤 2.1
将一阶导数设为等于 。
解题步骤 2.2
将分子设为等于零。
解题步骤 2.3
因为 ,所以没有解。
无解
无解
解题步骤 3
原问题的定义域中没有使得导数为 或无意义的 的值。
找不到驻点
解题步骤 4
解题步骤 4.1
将 的分母设为等于 ,以求使表达式无意义的区间。
解题步骤 4.2
求解 。
解题步骤 4.2.1
将 设为等于 。
解题步骤 4.2.2
从等式两边同时减去 。
解题步骤 5
求出让导数 等于 或无定义的点后,用来检验 在何处增加和在何处减少的区间即为 。
解题步骤 6
解题步骤 6.1
使用表达式中的 替换变量 。
解题步骤 6.2
化简结果。
解题步骤 6.2.1
化简分母。
解题步骤 6.2.1.1
将 和 相加。
解题步骤 6.2.1.2
对 进行 次方运算。
解题步骤 6.2.2
化简表达式。
解题步骤 6.2.2.1
用 除以 。
解题步骤 6.2.2.2
将 乘以 。
解题步骤 6.2.3
最终答案为 。
解题步骤 6.3
在 处,导数为 。由于其值为负,函数在 上递减。
因为 ,所以在 上递减
因为 ,所以在 上递减
解题步骤 7
解题步骤 7.1
使用表达式中的 替换变量 。
解题步骤 7.2
化简结果。
解题步骤 7.2.1
化简分母。
解题步骤 7.2.1.1
将 和 相加。
解题步骤 7.2.1.2
一的任意次幂都为一。
解题步骤 7.2.2
化简表达式。
解题步骤 7.2.2.1
用 除以 。
解题步骤 7.2.2.2
将 乘以 。
解题步骤 7.2.3
最终答案为 。
解题步骤 7.3
在 处,导数为 。由于其值为负,函数在 上递减。
因为 ,所以在 上递减
因为 ,所以在 上递减
解题步骤 8
列出函数在其上递增与递减的区间。
递减于:
解题步骤 9