输入问题...
微积分学 示例
解题步骤 1
解题步骤 1.1
求一阶导数。
解题步骤 1.1.1
根据加法法则, 对 的导数是 。
解题步骤 1.1.2
计算 。
解题步骤 1.1.2.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 1.1.2.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 1.1.2.3
将 乘以 。
解题步骤 1.1.3
计算 。
解题步骤 1.1.3.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 1.1.3.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 1.1.3.3
将 乘以 。
解题步骤 1.1.4
计算 。
解题步骤 1.1.4.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 1.1.4.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 1.1.4.3
将 乘以 。
解题步骤 1.2
求二阶导数。
解题步骤 1.2.1
根据加法法则, 对 的导数是 。
解题步骤 1.2.2
计算 。
解题步骤 1.2.2.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 1.2.2.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 1.2.2.3
将 乘以 。
解题步骤 1.2.3
计算 。
解题步骤 1.2.3.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 1.2.3.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 1.2.3.3
将 乘以 。
解题步骤 1.2.4
计算 。
解题步骤 1.2.4.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 1.2.4.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 1.2.4.3
将 乘以 。
解题步骤 1.3
对 的二阶导数是 。
解题步骤 2
解题步骤 2.1
将二阶导数设为等于 。
解题步骤 2.2
从 中分解出因数 。
解题步骤 2.2.1
从 中分解出因数 。
解题步骤 2.2.2
从 中分解出因数 。
解题步骤 2.2.3
从 中分解出因数 。
解题步骤 2.2.4
从 中分解出因数 。
解题步骤 2.2.5
从 中分解出因数 。
解题步骤 2.3
将 中的每一项除以 并化简。
解题步骤 2.3.1
将 中的每一项都除以 。
解题步骤 2.3.2
化简左边。
解题步骤 2.3.2.1
约去 的公因数。
解题步骤 2.3.2.1.1
约去公因数。
解题步骤 2.3.2.1.2
用 除以 。
解题步骤 2.3.3
化简右边。
解题步骤 2.3.3.1
用 除以 。
解题步骤 2.4
使用二次公式求解。
解题步骤 2.5
将 、 和 的值代入二次公式中并求解 。
解题步骤 2.6
化简。
解题步骤 2.6.1
化简分子。
解题步骤 2.6.1.1
对 进行 次方运算。
解题步骤 2.6.1.2
乘以 。
解题步骤 2.6.1.2.1
将 乘以 。
解题步骤 2.6.1.2.2
将 乘以 。
解题步骤 2.6.1.3
从 中减去 。
解题步骤 2.6.1.4
将 重写为 。
解题步骤 2.6.1.4.1
从 中分解出因数 。
解题步骤 2.6.1.4.2
将 重写为 。
解题步骤 2.6.1.5
从根式下提出各项。
解题步骤 2.6.2
将 乘以 。
解题步骤 2.6.3
化简 。
解题步骤 2.7
化简表达式以求 在 部分的解。
解题步骤 2.7.1
化简分子。
解题步骤 2.7.1.1
对 进行 次方运算。
解题步骤 2.7.1.2
乘以 。
解题步骤 2.7.1.2.1
将 乘以 。
解题步骤 2.7.1.2.2
将 乘以 。
解题步骤 2.7.1.3
从 中减去 。
解题步骤 2.7.1.4
将 重写为 。
解题步骤 2.7.1.4.1
从 中分解出因数 。
解题步骤 2.7.1.4.2
将 重写为 。
解题步骤 2.7.1.5
从根式下提出各项。
解题步骤 2.7.2
将 乘以 。
解题步骤 2.7.3
化简 。
解题步骤 2.7.4
将 变换为 。
解题步骤 2.8
化简表达式以求 在 部分的解。
解题步骤 2.8.1
化简分子。
解题步骤 2.8.1.1
对 进行 次方运算。
解题步骤 2.8.1.2
乘以 。
解题步骤 2.8.1.2.1
将 乘以 。
解题步骤 2.8.1.2.2
将 乘以 。
解题步骤 2.8.1.3
从 中减去 。
解题步骤 2.8.1.4
将 重写为 。
解题步骤 2.8.1.4.1
从 中分解出因数 。
解题步骤 2.8.1.4.2
将 重写为 。
解题步骤 2.8.1.5
从根式下提出各项。
解题步骤 2.8.2
将 乘以 。
解题步骤 2.8.3
化简 。
解题步骤 2.8.4
将 变换为 。
解题步骤 2.9
最终答案为两个解的组合。
解题步骤 3
解题步骤 3.1
将 代入 以求 的值。
解题步骤 3.1.1
使用表达式中的 替换变量 。
解题步骤 3.1.2
化简结果。
解题步骤 3.1.2.1
化简每一项。
解题步骤 3.1.2.1.1
对 进行 次方运算。
解题步骤 3.1.2.1.2
将 乘以 。
解题步骤 3.1.2.1.3
对 进行 次方运算。
解题步骤 3.1.2.1.4
将 乘以 。
解题步骤 3.1.2.1.5
对 进行 次方运算。
解题步骤 3.1.2.1.6
将 乘以 。
解题步骤 3.1.2.2
通过相加和相减进行化简。
解题步骤 3.1.2.2.1
将 和 相加。
解题步骤 3.1.2.2.2
从 中减去 。
解题步骤 3.1.2.3
最终答案为 。
解题步骤 3.2
通过将 代入 中求得的点为 。这个点可能是一个拐点。
解题步骤 3.3
将 代入 以求 的值。
解题步骤 3.3.1
使用表达式中的 替换变量 。
解题步骤 3.3.2
化简结果。
解题步骤 3.3.2.1
化简每一项。
解题步骤 3.3.2.1.1
对 进行 次方运算。
解题步骤 3.3.2.1.2
将 乘以 。
解题步骤 3.3.2.1.3
对 进行 次方运算。
解题步骤 3.3.2.1.4
将 乘以 。
解题步骤 3.3.2.1.5
对 进行 次方运算。
解题步骤 3.3.2.1.6
将 乘以 。
解题步骤 3.3.2.2
通过相加和相减进行化简。
解题步骤 3.3.2.2.1
将 和 相加。
解题步骤 3.3.2.2.2
从 中减去 。
解题步骤 3.3.2.3
最终答案为 。
解题步骤 3.4
通过将 代入 中求得的点为 。这个点可能是一个拐点。
解题步骤 3.5
确定可能是拐点的点。
解题步骤 4
分解 到各点周围的区间中,这些点有可能是拐点。
解题步骤 5
解题步骤 5.1
使用表达式中的 替换变量 。
解题步骤 5.2
化简结果。
解题步骤 5.2.1
化简每一项。
解题步骤 5.2.1.1
对 进行 次方运算。
解题步骤 5.2.1.2
将 乘以 。
解题步骤 5.2.1.3
将 乘以 。
解题步骤 5.2.2
通过相加和相减进行化简。
解题步骤 5.2.2.1
将 和 相加。
解题步骤 5.2.2.2
从 中减去 。
解题步骤 5.2.3
最终答案为 。
解题步骤 5.3
在 ,二阶导数为 。因为该值是负数,所以该二阶导数在区间 上递减
因为 ,所以在 上递减
因为 ,所以在 上递减
解题步骤 6
解题步骤 6.1
使用表达式中的 替换变量 。
解题步骤 6.2
化简结果。
解题步骤 6.2.1
化简每一项。
解题步骤 6.2.1.1
对 进行 次方运算。
解题步骤 6.2.1.2
将 乘以 。
解题步骤 6.2.1.3
将 乘以 。
解题步骤 6.2.2
通过相加和相减进行化简。
解题步骤 6.2.2.1
将 和 相加。
解题步骤 6.2.2.2
从 中减去 。
解题步骤 6.2.3
最终答案为 。
解题步骤 6.3
在 处,二阶导数为 。由于其值为正,二阶导数在区间 上递增。
因为 ,所以函数在 上递增
因为 ,所以函数在 上递增
解题步骤 7
解题步骤 7.1
使用表达式中的 替换变量 。
解题步骤 7.2
化简结果。
解题步骤 7.2.1
化简每一项。
解题步骤 7.2.1.1
对 进行 次方运算。
解题步骤 7.2.1.2
将 乘以 。
解题步骤 7.2.1.3
将 乘以 。
解题步骤 7.2.2
通过相加和相减进行化简。
解题步骤 7.2.2.1
将 和 相加。
解题步骤 7.2.2.2
从 中减去 。
解题步骤 7.2.3
最终答案为 。
解题步骤 7.3
在 ,二阶导数为 。因为该值是负数,所以该二阶导数在区间 上递减
因为 ,所以在 上递减
因为 ,所以在 上递减
解题步骤 8
拐点是凹凸性符号发生变化的曲线上的一个点,符号由正变为负,或是由负变为正。在本例中,拐点为 。
解题步骤 9