输入问题...
微积分学 示例
解题步骤 1
解题步骤 1.1
求一阶导数。
解题步骤 1.1.1
求微分。
解题步骤 1.1.1.1
根据加法法则, 对 的导数是 。
解题步骤 1.1.1.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 1.1.2
计算 。
解题步骤 1.1.2.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 1.1.2.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 1.1.2.3
将 乘以 。
解题步骤 1.1.3
计算 。
解题步骤 1.1.3.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 1.1.3.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 1.1.3.3
将 乘以 。
解题步骤 1.1.4
计算 。
解题步骤 1.1.4.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 1.1.4.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 1.1.4.3
将 乘以 。
解题步骤 1.1.5
使用常数法则求导。
解题步骤 1.1.5.1
因为 对于 是常数,所以 对 的导数为 。
解题步骤 1.1.5.2
将 和 相加。
解题步骤 1.2
求二阶导数。
解题步骤 1.2.1
根据加法法则, 对 的导数是 。
解题步骤 1.2.2
计算 。
解题步骤 1.2.2.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 1.2.2.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 1.2.2.3
将 乘以 。
解题步骤 1.2.3
计算 。
解题步骤 1.2.3.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 1.2.3.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 1.2.3.3
将 乘以 。
解题步骤 1.2.4
计算 。
解题步骤 1.2.4.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 1.2.4.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 1.2.4.3
将 乘以 。
解题步骤 1.2.5
使用常数法则求导。
解题步骤 1.2.5.1
因为 对于 是常数,所以 对 的导数为 。
解题步骤 1.2.5.2
将 和 相加。
解题步骤 1.3
对 的二阶导数是 。
解题步骤 2
解题步骤 2.1
将二阶导数设为等于 。
解题步骤 2.2
从 中分解出因数 。
解题步骤 2.2.1
从 中分解出因数 。
解题步骤 2.2.2
从 中分解出因数 。
解题步骤 2.2.3
从 中分解出因数 。
解题步骤 2.2.4
从 中分解出因数 。
解题步骤 2.2.5
从 中分解出因数 。
解题步骤 2.3
将 中的每一项除以 并化简。
解题步骤 2.3.1
将 中的每一项都除以 。
解题步骤 2.3.2
化简左边。
解题步骤 2.3.2.1
约去 的公因数。
解题步骤 2.3.2.1.1
约去公因数。
解题步骤 2.3.2.1.2
用 除以 。
解题步骤 2.3.3
化简右边。
解题步骤 2.3.3.1
用 除以 。
解题步骤 2.4
使用二次公式求解。
解题步骤 2.5
将 、 和 的值代入二次公式中并求解 。
解题步骤 2.6
化简。
解题步骤 2.6.1
化简分子。
解题步骤 2.6.1.1
对 进行 次方运算。
解题步骤 2.6.1.2
乘以 。
解题步骤 2.6.1.2.1
将 乘以 。
解题步骤 2.6.1.2.2
将 乘以 。
解题步骤 2.6.1.3
从 中减去 。
解题步骤 2.6.1.4
将 重写为 。
解题步骤 2.6.1.4.1
从 中分解出因数 。
解题步骤 2.6.1.4.2
将 重写为 。
解题步骤 2.6.1.5
从根式下提出各项。
解题步骤 2.6.2
将 乘以 。
解题步骤 2.6.3
化简 。
解题步骤 2.7
化简表达式以求 在 部分的解。
解题步骤 2.7.1
化简分子。
解题步骤 2.7.1.1
对 进行 次方运算。
解题步骤 2.7.1.2
乘以 。
解题步骤 2.7.1.2.1
将 乘以 。
解题步骤 2.7.1.2.2
将 乘以 。
解题步骤 2.7.1.3
从 中减去 。
解题步骤 2.7.1.4
将 重写为 。
解题步骤 2.7.1.4.1
从 中分解出因数 。
解题步骤 2.7.1.4.2
将 重写为 。
解题步骤 2.7.1.5
从根式下提出各项。
解题步骤 2.7.2
将 乘以 。
解题步骤 2.7.3
化简 。
解题步骤 2.7.4
将 变换为 。
解题步骤 2.8
化简表达式以求 在 部分的解。
解题步骤 2.8.1
化简分子。
解题步骤 2.8.1.1
对 进行 次方运算。
解题步骤 2.8.1.2
乘以 。
解题步骤 2.8.1.2.1
将 乘以 。
解题步骤 2.8.1.2.2
将 乘以 。
解题步骤 2.8.1.3
从 中减去 。
解题步骤 2.8.1.4
将 重写为 。
解题步骤 2.8.1.4.1
从 中分解出因数 。
解题步骤 2.8.1.4.2
将 重写为 。
解题步骤 2.8.1.5
从根式下提出各项。
解题步骤 2.8.2
将 乘以 。
解题步骤 2.8.3
化简 。
解题步骤 2.8.4
将 变换为 。
解题步骤 2.9
最终答案为两个解的组合。
解题步骤 3
解题步骤 3.1
将 代入 以求 的值。
解题步骤 3.1.1
使用表达式中的 替换变量 。
解题步骤 3.1.2
化简结果。
解题步骤 3.1.2.1
化简每一项。
解题步骤 3.1.2.1.1
使用二项式定理。
解题步骤 3.1.2.1.2
化简每一项。
解题步骤 3.1.2.1.2.1
对 进行 次方运算。
解题步骤 3.1.2.1.2.2
对 进行 次方运算。
解题步骤 3.1.2.1.2.3
将 乘以 。
解题步骤 3.1.2.1.2.4
对 进行 次方运算。
解题步骤 3.1.2.1.2.5
将 乘以 。
解题步骤 3.1.2.1.2.6
将 重写为 。
解题步骤 3.1.2.1.2.6.1
使用 ,将 重写成 。
解题步骤 3.1.2.1.2.6.2
运用幂法则并将指数相乘,。
解题步骤 3.1.2.1.2.6.3
组合 和 。
解题步骤 3.1.2.1.2.6.4
约去 的公因数。
解题步骤 3.1.2.1.2.6.4.1
约去公因数。
解题步骤 3.1.2.1.2.6.4.2
重写表达式。
解题步骤 3.1.2.1.2.6.5
计算指数。
解题步骤 3.1.2.1.2.7
将 乘以 。
解题步骤 3.1.2.1.2.8
将 乘以 。
解题步骤 3.1.2.1.2.9
将 重写为 。
解题步骤 3.1.2.1.2.10
对 进行 次方运算。
解题步骤 3.1.2.1.2.11
将 重写为 。
解题步骤 3.1.2.1.2.11.1
从 中分解出因数 。
解题步骤 3.1.2.1.2.11.2
将 重写为 。
解题步骤 3.1.2.1.2.12
从根式下提出各项。
解题步骤 3.1.2.1.2.13
将 乘以 。
解题步骤 3.1.2.1.2.14
将 重写为 。
解题步骤 3.1.2.1.2.14.1
使用 ,将 重写成 。
解题步骤 3.1.2.1.2.14.2
运用幂法则并将指数相乘,。
解题步骤 3.1.2.1.2.14.3
组合 和 。
解题步骤 3.1.2.1.2.14.4
约去 和 的公因数。
解题步骤 3.1.2.1.2.14.4.1
从 中分解出因数 。
解题步骤 3.1.2.1.2.14.4.2
约去公因数。
解题步骤 3.1.2.1.2.14.4.2.1
从 中分解出因数 。
解题步骤 3.1.2.1.2.14.4.2.2
约去公因数。
解题步骤 3.1.2.1.2.14.4.2.3
重写表达式。
解题步骤 3.1.2.1.2.14.4.2.4
用 除以 。
解题步骤 3.1.2.1.2.15
对 进行 次方运算。
解题步骤 3.1.2.1.3
将 和 相加。
解题步骤 3.1.2.1.4
将 和 相加。
解题步骤 3.1.2.1.5
将 和 相加。
解题步骤 3.1.2.1.6
使用二项式定理。
解题步骤 3.1.2.1.7
化简每一项。
解题步骤 3.1.2.1.7.1
对 进行 次方运算。
解题步骤 3.1.2.1.7.2
对 进行 次方运算。
解题步骤 3.1.2.1.7.3
将 乘以 。
解题步骤 3.1.2.1.7.4
将 乘以 。
解题步骤 3.1.2.1.7.5
将 重写为 。
解题步骤 3.1.2.1.7.5.1
使用 ,将 重写成 。
解题步骤 3.1.2.1.7.5.2
运用幂法则并将指数相乘,。
解题步骤 3.1.2.1.7.5.3
组合 和 。
解题步骤 3.1.2.1.7.5.4
约去 的公因数。
解题步骤 3.1.2.1.7.5.4.1
约去公因数。
解题步骤 3.1.2.1.7.5.4.2
重写表达式。
解题步骤 3.1.2.1.7.5.5
计算指数。
解题步骤 3.1.2.1.7.6
将 乘以 。
解题步骤 3.1.2.1.7.7
将 重写为 。
解题步骤 3.1.2.1.7.8
对 进行 次方运算。
解题步骤 3.1.2.1.7.9
将 重写为 。
解题步骤 3.1.2.1.7.9.1
从 中分解出因数 。
解题步骤 3.1.2.1.7.9.2
将 重写为 。
解题步骤 3.1.2.1.7.10
从根式下提出各项。
解题步骤 3.1.2.1.8
将 和 相加。
解题步骤 3.1.2.1.9
将 和 相加。
解题步骤 3.1.2.1.10
运用分配律。
解题步骤 3.1.2.1.11
将 乘以 。
解题步骤 3.1.2.1.12
将 乘以 。
解题步骤 3.1.2.1.13
将 重写为 。
解题步骤 3.1.2.1.14
使用 FOIL 方法展开 。
解题步骤 3.1.2.1.14.1
运用分配律。
解题步骤 3.1.2.1.14.2
运用分配律。
解题步骤 3.1.2.1.14.3
运用分配律。
解题步骤 3.1.2.1.15
化简并合并同类项。
解题步骤 3.1.2.1.15.1
化简每一项。
解题步骤 3.1.2.1.15.1.1
将 乘以 。
解题步骤 3.1.2.1.15.1.2
将 移到 的左侧。
解题步骤 3.1.2.1.15.1.3
使用根数乘积法则进行合并。
解题步骤 3.1.2.1.15.1.4
将 乘以 。
解题步骤 3.1.2.1.15.1.5
将 重写为 。
解题步骤 3.1.2.1.15.1.6
假设各项均为正实数,从根式下提出各项。
解题步骤 3.1.2.1.15.2
将 和 相加。
解题步骤 3.1.2.1.15.3
将 和 相加。
解题步骤 3.1.2.1.16
运用分配律。
解题步骤 3.1.2.1.17
将 乘以 。
解题步骤 3.1.2.1.18
将 乘以 。
解题步骤 3.1.2.1.19
运用分配律。
解题步骤 3.1.2.1.20
将 乘以 。
解题步骤 3.1.2.2
通过加上各项进行化简。
解题步骤 3.1.2.2.1
从 中减去 。
解题步骤 3.1.2.2.2
通过相加和相减进行化简。
解题步骤 3.1.2.2.2.1
将 和 相加。
解题步骤 3.1.2.2.2.2
将 和 相加。
解题步骤 3.1.2.2.2.3
从 中减去 。
解题步骤 3.1.2.2.3
从 中减去 。
解题步骤 3.1.2.2.4
将 和 相加。
解题步骤 3.1.2.2.5
将 和 相加。
解题步骤 3.1.2.3
最终答案为 。
解题步骤 3.2
通过将 代入 中求得的点为 。这个点可能是一个拐点。
解题步骤 3.3
将 代入 以求 的值。
解题步骤 3.3.1
使用表达式中的 替换变量 。
解题步骤 3.3.2
化简结果。
解题步骤 3.3.2.1
化简每一项。
解题步骤 3.3.2.1.1
使用二项式定理。
解题步骤 3.3.2.1.2
化简每一项。
解题步骤 3.3.2.1.2.1
对 进行 次方运算。
解题步骤 3.3.2.1.2.2
对 进行 次方运算。
解题步骤 3.3.2.1.2.3
将 乘以 。
解题步骤 3.3.2.1.2.4
将 乘以 。
解题步骤 3.3.2.1.2.5
对 进行 次方运算。
解题步骤 3.3.2.1.2.6
将 乘以 。
解题步骤 3.3.2.1.2.7
对 运用乘积法则。
解题步骤 3.3.2.1.2.8
对 进行 次方运算。
解题步骤 3.3.2.1.2.9
将 乘以 。
解题步骤 3.3.2.1.2.10
将 重写为 。
解题步骤 3.3.2.1.2.10.1
使用 ,将 重写成 。
解题步骤 3.3.2.1.2.10.2
运用幂法则并将指数相乘,。
解题步骤 3.3.2.1.2.10.3
组合 和 。
解题步骤 3.3.2.1.2.10.4
约去 的公因数。
解题步骤 3.3.2.1.2.10.4.1
约去公因数。
解题步骤 3.3.2.1.2.10.4.2
重写表达式。
解题步骤 3.3.2.1.2.10.5
计算指数。
解题步骤 3.3.2.1.2.11
将 乘以 。
解题步骤 3.3.2.1.2.12
将 乘以 。
解题步骤 3.3.2.1.2.13
对 运用乘积法则。
解题步骤 3.3.2.1.2.14
对 进行 次方运算。
解题步骤 3.3.2.1.2.15
将 重写为 。
解题步骤 3.3.2.1.2.16
对 进行 次方运算。
解题步骤 3.3.2.1.2.17
将 重写为 。
解题步骤 3.3.2.1.2.17.1
从 中分解出因数 。
解题步骤 3.3.2.1.2.17.2
将 重写为 。
解题步骤 3.3.2.1.2.18
从根式下提出各项。
解题步骤 3.3.2.1.2.19
将 乘以 。
解题步骤 3.3.2.1.2.20
将 乘以 。
解题步骤 3.3.2.1.2.21
对 运用乘积法则。
解题步骤 3.3.2.1.2.22
对 进行 次方运算。
解题步骤 3.3.2.1.2.23
将 乘以 。
解题步骤 3.3.2.1.2.24
将 重写为 。
解题步骤 3.3.2.1.2.24.1
使用 ,将 重写成 。
解题步骤 3.3.2.1.2.24.2
运用幂法则并将指数相乘,。
解题步骤 3.3.2.1.2.24.3
组合 和 。
解题步骤 3.3.2.1.2.24.4
约去 和 的公因数。
解题步骤 3.3.2.1.2.24.4.1
从 中分解出因数 。
解题步骤 3.3.2.1.2.24.4.2
约去公因数。
解题步骤 3.3.2.1.2.24.4.2.1
从 中分解出因数 。
解题步骤 3.3.2.1.2.24.4.2.2
约去公因数。
解题步骤 3.3.2.1.2.24.4.2.3
重写表达式。
解题步骤 3.3.2.1.2.24.4.2.4
用 除以 。
解题步骤 3.3.2.1.2.25
对 进行 次方运算。
解题步骤 3.3.2.1.3
将 和 相加。
解题步骤 3.3.2.1.4
将 和 相加。
解题步骤 3.3.2.1.5
从 中减去 。
解题步骤 3.3.2.1.6
使用二项式定理。
解题步骤 3.3.2.1.7
化简每一项。
解题步骤 3.3.2.1.7.1
对 进行 次方运算。
解题步骤 3.3.2.1.7.2
对 进行 次方运算。
解题步骤 3.3.2.1.7.3
将 乘以 。
解题步骤 3.3.2.1.7.4
将 乘以 。
解题步骤 3.3.2.1.7.5
将 乘以 。
解题步骤 3.3.2.1.7.6
对 运用乘积法则。
解题步骤 3.3.2.1.7.7
对 进行 次方运算。
解题步骤 3.3.2.1.7.8
将 乘以 。
解题步骤 3.3.2.1.7.9
将 重写为 。
解题步骤 3.3.2.1.7.9.1
使用 ,将 重写成 。
解题步骤 3.3.2.1.7.9.2
运用幂法则并将指数相乘,。
解题步骤 3.3.2.1.7.9.3
组合 和 。
解题步骤 3.3.2.1.7.9.4
约去 的公因数。
解题步骤 3.3.2.1.7.9.4.1
约去公因数。
解题步骤 3.3.2.1.7.9.4.2
重写表达式。
解题步骤 3.3.2.1.7.9.5
计算指数。
解题步骤 3.3.2.1.7.10
将 乘以 。
解题步骤 3.3.2.1.7.11
对 运用乘积法则。
解题步骤 3.3.2.1.7.12
对 进行 次方运算。
解题步骤 3.3.2.1.7.13
将 重写为 。
解题步骤 3.3.2.1.7.14
对 进行 次方运算。
解题步骤 3.3.2.1.7.15
将 重写为 。
解题步骤 3.3.2.1.7.15.1
从 中分解出因数 。
解题步骤 3.3.2.1.7.15.2
将 重写为 。
解题步骤 3.3.2.1.7.16
从根式下提出各项。
解题步骤 3.3.2.1.7.17
将 乘以 。
解题步骤 3.3.2.1.8
将 和 相加。
解题步骤 3.3.2.1.9
从 中减去 。
解题步骤 3.3.2.1.10
运用分配律。
解题步骤 3.3.2.1.11
将 乘以 。
解题步骤 3.3.2.1.12
将 乘以 。
解题步骤 3.3.2.1.13
将 重写为 。
解题步骤 3.3.2.1.14
使用 FOIL 方法展开 。
解题步骤 3.3.2.1.14.1
运用分配律。
解题步骤 3.3.2.1.14.2
运用分配律。
解题步骤 3.3.2.1.14.3
运用分配律。
解题步骤 3.3.2.1.15
化简并合并同类项。
解题步骤 3.3.2.1.15.1
化简每一项。
解题步骤 3.3.2.1.15.1.1
将 乘以 。
解题步骤 3.3.2.1.15.1.2
将 乘以 。
解题步骤 3.3.2.1.15.1.3
将 乘以 。
解题步骤 3.3.2.1.15.1.4
乘以 。
解题步骤 3.3.2.1.15.1.4.1
将 乘以 。
解题步骤 3.3.2.1.15.1.4.2
将 乘以 。
解题步骤 3.3.2.1.15.1.4.3
对 进行 次方运算。
解题步骤 3.3.2.1.15.1.4.4
对 进行 次方运算。
解题步骤 3.3.2.1.15.1.4.5
使用幂法则 合并指数。
解题步骤 3.3.2.1.15.1.4.6
将 和 相加。
解题步骤 3.3.2.1.15.1.5
将 重写为 。
解题步骤 3.3.2.1.15.1.5.1
使用 ,将 重写成 。
解题步骤 3.3.2.1.15.1.5.2
运用幂法则并将指数相乘,。
解题步骤 3.3.2.1.15.1.5.3
组合 和 。
解题步骤 3.3.2.1.15.1.5.4
约去 的公因数。
解题步骤 3.3.2.1.15.1.5.4.1
约去公因数。
解题步骤 3.3.2.1.15.1.5.4.2
重写表达式。
解题步骤 3.3.2.1.15.1.5.5
计算指数。
解题步骤 3.3.2.1.15.2
将 和 相加。
解题步骤 3.3.2.1.15.3
从 中减去 。
解题步骤 3.3.2.1.16
运用分配律。
解题步骤 3.3.2.1.17
将 乘以 。
解题步骤 3.3.2.1.18
将 乘以 。
解题步骤 3.3.2.1.19
运用分配律。
解题步骤 3.3.2.1.20
将 乘以 。
解题步骤 3.3.2.1.21
将 乘以 。
解题步骤 3.3.2.2
通过加上各项进行化简。
解题步骤 3.3.2.2.1
从 中减去 。
解题步骤 3.3.2.2.2
通过相加和相减进行化简。
解题步骤 3.3.2.2.2.1
将 和 相加。
解题步骤 3.3.2.2.2.2
将 和 相加。
解题步骤 3.3.2.2.2.3
从 中减去 。
解题步骤 3.3.2.2.3
将 和 相加。
解题步骤 3.3.2.2.4
从 中减去 。
解题步骤 3.3.2.2.5
从 中减去 。
解题步骤 3.3.2.3
最终答案为 。
解题步骤 3.4
通过将 代入 中求得的点为 。这个点可能是一个拐点。
解题步骤 3.5
确定可能是拐点的点。
解题步骤 4
分解 到各点周围的区间中,这些点有可能是拐点。
解题步骤 5
解题步骤 5.1
使用表达式中的 替换变量 。
解题步骤 5.2
化简结果。
解题步骤 5.2.1
化简每一项。
解题步骤 5.2.1.1
对 进行 次方运算。
解题步骤 5.2.1.2
将 乘以 。
解题步骤 5.2.1.3
将 乘以 。
解题步骤 5.2.2
通过相加和相减进行化简。
解题步骤 5.2.2.1
从 中减去 。
解题步骤 5.2.2.2
将 和 相加。
解题步骤 5.2.3
最终答案为 。
解题步骤 5.3
在 处,二阶导数为 。由于其值为正,二阶导数在区间 上递增。
因为 ,所以函数在 上递增
因为 ,所以函数在 上递增
解题步骤 6
解题步骤 6.1
使用表达式中的 替换变量 。
解题步骤 6.2
化简结果。
解题步骤 6.2.1
化简每一项。
解题步骤 6.2.1.1
对 进行 次方运算。
解题步骤 6.2.1.2
将 乘以 。
解题步骤 6.2.1.3
将 乘以 。
解题步骤 6.2.2
通过相加和相减进行化简。
解题步骤 6.2.2.1
从 中减去 。
解题步骤 6.2.2.2
将 和 相加。
解题步骤 6.2.3
最终答案为 。
解题步骤 6.3
在 ,二阶导数为 。因为该值是负数,所以该二阶导数在区间 上递减
因为 ,所以在 上递减
因为 ,所以在 上递减
解题步骤 7
解题步骤 7.1
使用表达式中的 替换变量 。
解题步骤 7.2
化简结果。
解题步骤 7.2.1
化简每一项。
解题步骤 7.2.1.1
对 进行 次方运算。
解题步骤 7.2.1.2
将 乘以 。
解题步骤 7.2.1.3
将 乘以 。
解题步骤 7.2.2
通过相加和相减进行化简。
解题步骤 7.2.2.1
从 中减去 。
解题步骤 7.2.2.2
将 和 相加。
解题步骤 7.2.3
最终答案为 。
解题步骤 7.3
在 处,二阶导数为 。由于其值为正,二阶导数在区间 上递增。
因为 ,所以函数在 上递增
因为 ,所以函数在 上递增
解题步骤 8
An inflection point is a point on a curve at which the concavity changes sign from plus to minus or from minus to plus. The inflection points in this case are .
解题步骤 9