输入问题...
微积分学 示例
解题步骤 1
解题步骤 1.1
求一阶导数。
解题步骤 1.1.1
使用常数相乘法则求微分。
解题步骤 1.1.1.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 1.1.1.2
将 重写为 。
解题步骤 1.1.2
使用链式法则求微分,根据该法则, 等于 ,其中 且 。
解题步骤 1.1.2.1
要使用链式法则,请将 设为 。
解题步骤 1.1.2.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 1.1.2.3
使用 替换所有出现的 。
解题步骤 1.1.3
求微分。
解题步骤 1.1.3.1
将 乘以 。
解题步骤 1.1.3.2
根据加法法则, 对 的导数是 。
解题步骤 1.1.3.3
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 1.1.3.4
因为 对于 是常数,所以 对 的导数为 。
解题步骤 1.1.3.5
化简表达式。
解题步骤 1.1.3.5.1
将 和 相加。
解题步骤 1.1.3.5.2
将 乘以 。
解题步骤 1.1.4
化简。
解题步骤 1.1.4.1
使用负指数规则 重写表达式。
解题步骤 1.1.4.2
合并项。
解题步骤 1.1.4.2.1
组合 和 。
解题步骤 1.1.4.2.2
将负号移到分数的前面。
解题步骤 1.2
求二阶导数。
解题步骤 1.2.1
使用常数相乘法则求微分。
解题步骤 1.2.1.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 1.2.1.2
应用指数的基本规则。
解题步骤 1.2.1.2.1
将 重写为 。
解题步骤 1.2.1.2.2
将 中的指数相乘。
解题步骤 1.2.1.2.2.1
运用幂法则并将指数相乘,。
解题步骤 1.2.1.2.2.2
将 乘以 。
解题步骤 1.2.2
使用链式法则求微分,根据该法则, 等于 ,其中 且 。
解题步骤 1.2.2.1
要使用链式法则,请将 设为 。
解题步骤 1.2.2.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 1.2.2.3
使用 替换所有出现的 。
解题步骤 1.2.3
求微分。
解题步骤 1.2.3.1
将 乘以 。
解题步骤 1.2.3.2
根据加法法则, 对 的导数是 。
解题步骤 1.2.3.3
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 1.2.3.4
因为 对于 是常数,所以 对 的导数为 。
解题步骤 1.2.3.5
化简表达式。
解题步骤 1.2.3.5.1
将 和 相加。
解题步骤 1.2.3.5.2
将 乘以 。
解题步骤 1.2.4
化简。
解题步骤 1.2.4.1
使用负指数规则 重写表达式。
解题步骤 1.2.4.2
组合 和 。
解题步骤 1.3
对 的二阶导数是 。
解题步骤 2
解题步骤 2.1
将二阶导数设为等于 。
解题步骤 2.2
将分子设为等于零。
解题步骤 2.3
因为 ,所以没有解。
无解
无解
解题步骤 3
找不到使二阶导数等于 的值。
不存在拐点