输入问题...
微积分学 示例
解题步骤 1
由于 对于 是常数,所以将 移到积分外。
解题步骤 2
解题步骤 2.1
设 。求 。
解题步骤 2.1.1
对 求导。
解题步骤 2.1.2
因为 对于 是常数,所以 对 的导数是 。
解题步骤 2.1.3
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 2.1.4
将 乘以 。
解题步骤 2.2
将下限代入替换 中的 。
解题步骤 2.3
将 乘以 。
解题步骤 2.4
将上限代入替换 中的 。
解题步骤 2.5
将 乘以 。
解题步骤 2.6
求得的 和 的值将用来计算定积分。
解题步骤 2.7
使用 、 以及积分的新极限重写该问题。
解题步骤 3
解题步骤 3.1
将负号移到分数的前面。
解题步骤 3.2
组合 和 。
解题步骤 4
由于 对于 是常数,所以将 移到积分外。
解题步骤 5
将 乘以 。
解题步骤 6
由于 对于 是常数,所以将 移到积分外。
解题步骤 7
解题步骤 7.1
组合 和 。
解题步骤 7.2
将负号移到分数的前面。
解题步骤 8
对 的积分为 。
解题步骤 9
解题步骤 9.1
计算 在 处和在 处的值。
解题步骤 9.2
化简。
解题步骤 9.2.1
任何数的 次方都是 。
解题步骤 9.2.2
将 乘以 。
解题步骤 10
解题步骤 10.1
用 除以 。
解题步骤 10.2
将 乘以 。
解题步骤 10.3
运用分配律。
解题步骤 10.4
将 乘以 。
解题步骤 10.5
化简每一项。
解题步骤 10.5.1
使用负指数规则 重写表达式。
解题步骤 10.5.2
组合 和 。
解题步骤 10.5.3
将负号移到分数的前面。
解题步骤 11
结果可以多种形式表示。
恰当形式:
小数形式:
解题步骤 12