输入问题...
微积分学 示例
解题步骤 1
由于 对于 是常数,所以将 移到积分外。
解题步骤 2
解题步骤 2.1
设 。求 。
解题步骤 2.1.1
对 求导。
解题步骤 2.1.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 2.2
使用 和 重写该问题。
解题步骤 3
解题步骤 3.1
将 重写为 。
解题步骤 3.1.1
使用 ,将 重写成 。
解题步骤 3.1.2
运用幂法则并将指数相乘,。
解题步骤 3.1.3
组合 和 。
解题步骤 3.1.4
约去 和 的公因数。
解题步骤 3.1.4.1
从 中分解出因数 。
解题步骤 3.1.4.2
约去公因数。
解题步骤 3.1.4.2.1
从 中分解出因数 。
解题步骤 3.1.4.2.2
约去公因数。
解题步骤 3.1.4.2.3
重写表达式。
解题步骤 3.1.4.2.4
用 除以 。
解题步骤 3.2
将 重写为 。
解题步骤 3.2.1
使用 ,将 重写成 。
解题步骤 3.2.2
运用幂法则并将指数相乘,。
解题步骤 3.2.3
组合 和 。
解题步骤 3.2.4
约去 和 的公因数。
解题步骤 3.2.4.1
从 中分解出因数 。
解题步骤 3.2.4.2
约去公因数。
解题步骤 3.2.4.2.1
从 中分解出因数 。
解题步骤 3.2.4.2.2
约去公因数。
解题步骤 3.2.4.2.3
重写表达式。
解题步骤 3.2.4.2.4
用 除以 。
解题步骤 3.3
组合 和 。
解题步骤 3.4
组合 和 。
解题步骤 4
由于 对于 是常数,所以将 移到积分外。
解题步骤 5
解题步骤 5.1
组合 和 。
解题步骤 5.2
约去 和 的公因数。
解题步骤 5.2.1
从 中分解出因数 。
解题步骤 5.2.2
约去公因数。
解题步骤 5.2.2.1
从 中分解出因数 。
解题步骤 5.2.2.2
约去公因数。
解题步骤 5.2.2.3
重写表达式。
解题步骤 5.2.2.4
用 除以 。
解题步骤 6
解题步骤 6.1
设 。求 。
解题步骤 6.1.1
对 求导。
解题步骤 6.1.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 6.2
使用 和 重写该问题。
解题步骤 7
解题步骤 7.1
将 重写为 。
解题步骤 7.1.1
使用 ,将 重写成 。
解题步骤 7.1.2
运用幂法则并将指数相乘,。
解题步骤 7.1.3
组合 和 。
解题步骤 7.1.4
约去 和 的公因数。
解题步骤 7.1.4.1
从 中分解出因数 。
解题步骤 7.1.4.2
约去公因数。
解题步骤 7.1.4.2.1
从 中分解出因数 。
解题步骤 7.1.4.2.2
约去公因数。
解题步骤 7.1.4.2.3
重写表达式。
解题步骤 7.1.4.2.4
用 除以 。
解题步骤 7.2
组合 和 。
解题步骤 7.3
组合 和 。
解题步骤 8
由于 对于 是常数,所以将 移到积分外。
解题步骤 9
解题步骤 9.1
组合 和 。
解题步骤 9.2
约去 和 的公因数。
解题步骤 9.2.1
从 中分解出因数 。
解题步骤 9.2.2
约去公因数。
解题步骤 9.2.2.1
从 中分解出因数 。
解题步骤 9.2.2.2
约去公因数。
解题步骤 9.2.2.3
重写表达式。
解题步骤 9.2.2.4
用 除以 。
解题步骤 10
解题步骤 10.1
设 。求 。
解题步骤 10.1.1
对 求导。
解题步骤 10.1.2
因为 对于 是常数,所以 对 的导数是 。
解题步骤 10.1.3
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 10.1.4
将 乘以 。
解题步骤 10.2
使用 和 重写该问题。
解题步骤 11
解题步骤 11.1
将负号移到分数的前面。
解题步骤 11.2
组合 和 。
解题步骤 12
由于 对于 是常数,所以将 移到积分外。
解题步骤 13
将 乘以 。
解题步骤 14
由于 对于 是常数,所以将 移到积分外。
解题步骤 15
解题步骤 15.1
组合 和 。
解题步骤 15.2
约去 和 的公因数。
解题步骤 15.2.1
从 中分解出因数 。
解题步骤 15.2.2
约去公因数。
解题步骤 15.2.2.1
从 中分解出因数 。
解题步骤 15.2.2.2
约去公因数。
解题步骤 15.2.2.3
重写表达式。
解题步骤 15.2.2.4
用 除以 。
解题步骤 16
对 的积分为 。
解题步骤 17
化简。
解题步骤 18
解题步骤 18.1
使用 替换所有出现的 。
解题步骤 18.2
使用 替换所有出现的 。
解题步骤 18.3
使用 替换所有出现的 。