输入问题...
微积分学 示例
解题步骤 1
由于 对于 是常数,所以将 移到积分外。
解题步骤 2
解题步骤 2.1
设 。求 。
解题步骤 2.1.1
对 求导。
解题步骤 2.1.2
根据加法法则, 对 的导数是 。
解题步骤 2.1.3
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 2.1.4
因为 对于 是常数,所以 对 的导数为 。
解题步骤 2.1.5
将 和 相加。
解题步骤 2.2
将下限代入替换 中的 。
解题步骤 2.3
化简。
解题步骤 2.3.1
对 进行 次方运算。
解题步骤 2.3.2
从 中减去 。
解题步骤 2.4
将上限代入替换 中的 。
解题步骤 2.5
化简。
解题步骤 2.5.1
对 进行 次方运算。
解题步骤 2.5.2
从 中减去 。
解题步骤 2.6
求得的 和 的值将用来计算定积分。
解题步骤 2.7
使用 、 以及积分的新极限重写该问题。
解题步骤 3
组合 和 。
解题步骤 4
由于 对于 是常数,所以将 移到积分外。
解题步骤 5
解题步骤 5.1
化简。
解题步骤 5.1.1
组合 和 。
解题步骤 5.1.2
约去 的公因数。
解题步骤 5.1.2.1
约去公因数。
解题步骤 5.1.2.2
重写表达式。
解题步骤 5.1.3
将 乘以 。
解题步骤 5.2
使用 ,将 重写成 。
解题步骤 6
根据幂法则, 对 的积分是 。
解题步骤 7
解题步骤 7.1
计算 在 处和在 处的值。
解题步骤 7.2
化简。
解题步骤 7.2.1
组合 和 。
解题步骤 7.2.2
将 重写为 。
解题步骤 7.2.3
将 中的指数相乘。
解题步骤 7.2.3.1
运用幂法则并将指数相乘,。
解题步骤 7.2.3.2
乘以 。
解题步骤 7.2.3.2.1
组合 和 。
解题步骤 7.2.3.2.2
将 乘以 。
解题步骤 7.2.4
使用幂法则 合并指数。
解题步骤 7.2.5
将 写成具有公分母的分数。
解题步骤 7.2.6
在公分母上合并分子。
解题步骤 7.2.7
将 和 相加。
解题步骤 7.2.8
组合 和 。
解题步骤 7.2.9
将 移到 的左侧。
解题步骤 8
结果可以多种形式表示。
恰当形式:
小数形式:
解题步骤 9