输入问题...
微积分学 示例
解题步骤 1
利用公式 来分部求积分,其中 ,。
解题步骤 2
解题步骤 2.1
组合 和 。
解题步骤 2.2
组合 和 。
解题步骤 3
由于 对于 是常数,所以将 移到积分外。
解题步骤 4
解题步骤 4.1
将 乘以 。
解题步骤 4.2
组合 和 。
解题步骤 4.3
约去 和 的公因数。
解题步骤 4.3.1
从 中分解出因数 。
解题步骤 4.3.2
约去公因数。
解题步骤 4.3.2.1
从 中分解出因数 。
解题步骤 4.3.2.2
约去公因数。
解题步骤 4.3.2.3
重写表达式。
解题步骤 4.3.2.4
用 除以 。
解题步骤 4.4
将 乘以 。
解题步骤 5
利用公式 来分部求积分,其中 ,。
解题步骤 6
解题步骤 6.1
组合 和 。
解题步骤 6.2
组合 和 。
解题步骤 6.3
组合 和 。
解题步骤 6.4
将 乘以 。
解题步骤 6.5
组合 和 。
解题步骤 6.6
组合 和 。
解题步骤 6.7
将负号移到分数的前面。
解题步骤 7
由于 对于 是常数,所以将 移到积分外。
解题步骤 8
解题步骤 8.1
将 乘以 。
解题步骤 8.2
将 乘以 。
解题步骤 9
由于 对于 是常数,所以将 移到积分外。
解题步骤 10
利用公式 来分部求积分,其中 ,。
解题步骤 11
解题步骤 11.1
组合 和 。
解题步骤 11.2
组合 和 。
解题步骤 11.3
组合 和 。
解题步骤 11.4
将 乘以 。
解题步骤 11.5
组合 和 。
解题步骤 11.6
组合 和 。
解题步骤 11.7
约去 和 的公因数。
解题步骤 11.7.1
从 中分解出因数 。
解题步骤 11.7.2
约去公因数。
解题步骤 11.7.2.1
从 中分解出因数 。
解题步骤 11.7.2.2
约去公因数。
解题步骤 11.7.2.3
重写表达式。
解题步骤 11.7.2.4
用 除以 。
解题步骤 12
由于 对于 是常数,所以将 移到积分外。
解题步骤 13
解题步骤 13.1
将 乘以 。
解题步骤 13.2
将 乘以 。
解题步骤 14
利用公式 来分部求积分,其中 ,。
解题步骤 15
解题步骤 15.1
组合 和 。
解题步骤 15.2
组合 和 。
解题步骤 15.3
组合 和 。
解题步骤 16
由于 对于 是常数,所以将 移到积分外。
解题步骤 17
解题步骤 17.1
将 乘以 。
解题步骤 17.2
将 乘以 。
解题步骤 18
由于 对于 是常数,所以将 移到积分外。
解题步骤 19
解题步骤 19.1
设 。求 。
解题步骤 19.1.1
对 求导。
解题步骤 19.1.2
因为 对于 是常数,所以 对 的导数是 。
解题步骤 19.1.3
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 19.1.4
将 乘以 。
解题步骤 19.2
使用 和 重写该问题。
解题步骤 20
解题步骤 20.1
将负号移到分数的前面。
解题步骤 20.2
组合 和 。
解题步骤 21
由于 对于 是常数,所以将 移到积分外。
解题步骤 22
由于 对于 是常数,所以将 移到积分外。
解题步骤 23
解题步骤 23.1
将 乘以 。
解题步骤 23.2
将 乘以 。
解题步骤 24
对 的积分为 。
解题步骤 25
解题步骤 25.1
将 重写为 。
解题步骤 25.2
化简。
解题步骤 25.2.1
要将 写成带有公分母的分数,请乘以 。
解题步骤 25.2.2
组合 和 。
解题步骤 25.2.3
在公分母上合并分子。
解题步骤 25.2.4
将 乘以 。
解题步骤 26
使用 替换所有出现的 。
解题步骤 27
重新排序项。