输入问题...
微积分学 示例
解题步骤 1
解题步骤 1.1
计算分子和分母的极限值。
解题步骤 1.1.1
取分子和分母极限值。
解题步骤 1.1.2
计算分子的极限值。
解题步骤 1.1.2.1
计算极限值。
解题步骤 1.1.2.1.1
当 趋于 时,利用极限的加法法则来分解极限。
解题步骤 1.1.2.1.2
计算 的极限值,当 趋近于 时此极限值为常数。
解题步骤 1.1.2.2
将 代入 来计算 的极限值。
解题步骤 1.1.2.3
化简答案。
解题步骤 1.1.2.3.1
将 乘以 。
解题步骤 1.1.2.3.2
从 中减去 。
解题步骤 1.1.3
计算分母的极限值。
解题步骤 1.1.3.1
当 趋于 时,利用极限的加法法则来分解极限。
解题步骤 1.1.3.2
将极限移入根号内。
解题步骤 1.1.3.3
将极限移入根号内。
解题步骤 1.1.3.4
当 趋于 时,利用极限的加法法则来分解极限。
解题步骤 1.1.3.5
计算 的极限值,当 趋近于 时此极限值为常数。
解题步骤 1.1.3.6
将 代入所有出现 的地方来计算极限值。
解题步骤 1.1.3.6.1
将 代入 来计算 的极限值。
解题步骤 1.1.3.6.2
将 代入 来计算 的极限值。
解题步骤 1.1.3.7
化简答案。
解题步骤 1.1.3.7.1
从 中减去 。
解题步骤 1.1.3.7.2
从 中减去 。
解题步骤 1.1.3.7.3
该表达式包含分母 。该表达式无定义。
无定义
解题步骤 1.1.3.8
该表达式包含分母 。该表达式无定义。
无定义
解题步骤 1.1.4
该表达式包含分母 。该表达式无定义。
无定义
解题步骤 1.2
因为 是不定式,所以应该应用洛必达法则。洛必达法则表明,函数的商的极限等于它们导数的商的极限。
解题步骤 1.3
求分子和分母的导数。
解题步骤 1.3.1
对分子和分母进行求导。
解题步骤 1.3.2
根据加法法则, 对 的导数是 。
解题步骤 1.3.3
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 1.3.4
因为 对于 是常数,所以 对 的导数为 。
解题步骤 1.3.5
将 和 相加。
解题步骤 1.3.6
根据加法法则, 对 的导数是 。
解题步骤 1.3.7
计算 。
解题步骤 1.3.7.1
使用 ,将 重写成 。
解题步骤 1.3.7.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 1.3.7.3
要将 写成带有公分母的分数,请乘以 。
解题步骤 1.3.7.4
组合 和 。
解题步骤 1.3.7.5
在公分母上合并分子。
解题步骤 1.3.7.6
化简分子。
解题步骤 1.3.7.6.1
将 乘以 。
解题步骤 1.3.7.6.2
从 中减去 。
解题步骤 1.3.7.7
将负号移到分数的前面。
解题步骤 1.3.8
计算 。
解题步骤 1.3.8.1
使用 ,将 重写成 。
解题步骤 1.3.8.2
因为 对于 是常数,所以 对 的导数是 。
解题步骤 1.3.8.3
使用链式法则求微分,根据该法则, 等于 ,其中 且 。
解题步骤 1.3.8.3.1
要使用链式法则,请将 设为 。
解题步骤 1.3.8.3.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 1.3.8.3.3
使用 替换所有出现的 。
解题步骤 1.3.8.4
根据加法法则, 对 的导数是 。
解题步骤 1.3.8.5
因为 对于 是常数,所以 对 的导数为 。
解题步骤 1.3.8.6
因为 对于 是常数,所以 对 的导数是 。
解题步骤 1.3.8.7
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 1.3.8.8
要将 写成带有公分母的分数,请乘以 。
解题步骤 1.3.8.9
组合 和 。
解题步骤 1.3.8.10
在公分母上合并分子。
解题步骤 1.3.8.11
化简分子。
解题步骤 1.3.8.11.1
将 乘以 。
解题步骤 1.3.8.11.2
从 中减去 。
解题步骤 1.3.8.12
将负号移到分数的前面。
解题步骤 1.3.8.13
将 乘以 。
解题步骤 1.3.8.14
从 中减去 。
解题步骤 1.3.8.15
组合 和 。
解题步骤 1.3.8.16
组合 和 。
解题步骤 1.3.8.17
将 移到 的左侧。
解题步骤 1.3.8.18
将 重写为 。
解题步骤 1.3.8.19
使用负指数规则 将 移动到分母。
解题步骤 1.3.8.20
将负号移到分数的前面。
解题步骤 1.3.8.21
将 乘以 。
解题步骤 1.3.8.22
将 乘以 。
解题步骤 1.3.9
化简。
解题步骤 1.3.9.1
使用负指数规则 重写表达式。
解题步骤 1.3.9.2
将 乘以 。
解题步骤 1.4
将分数指数转换为根式。
解题步骤 1.4.1
将 重写为 。
解题步骤 1.4.2
将 重写为 。
解题步骤 2
解题步骤 2.1
当 趋于 时,利用极限的除法定则来分解极限。
解题步骤 2.2
计算 的极限值,当 趋近于 时此极限值为常数。
解题步骤 2.3
当 趋于 时,利用极限的加法法则来分解极限。
解题步骤 2.4
因为项 对于 为常数,所以将其移动到极限外。
解题步骤 2.5
当 趋于 时,利用极限的除法定则来分解极限。
解题步骤 2.6
计算 的极限值,当 趋近于 时此极限值为常数。
解题步骤 2.7
将极限移入根号内。
解题步骤 2.8
因为项 对于 为常数,所以将其移动到极限外。
解题步骤 2.9
当 趋于 时,利用极限的除法定则来分解极限。
解题步骤 2.10
计算 的极限值,当 趋近于 时此极限值为常数。
解题步骤 2.11
将极限移入根号内。
解题步骤 2.12
当 趋于 时,利用极限的加法法则来分解极限。
解题步骤 2.13
计算 的极限值,当 趋近于 时此极限值为常数。
解题步骤 3
解题步骤 3.1
将 代入 来计算 的极限值。
解题步骤 3.2
将 代入 来计算 的极限值。
解题步骤 4
解题步骤 4.1
从 中减去 。
解题步骤 4.2
化简分母。
解题步骤 4.2.1
将 乘以 。
解题步骤 4.2.2
合并和化简分母。
解题步骤 4.2.2.1
将 乘以 。
解题步骤 4.2.2.2
对 进行 次方运算。
解题步骤 4.2.2.3
对 进行 次方运算。
解题步骤 4.2.2.4
使用幂法则 合并指数。
解题步骤 4.2.2.5
将 和 相加。
解题步骤 4.2.2.6
将 重写为 。
解题步骤 4.2.2.6.1
使用 ,将 重写成 。
解题步骤 4.2.2.6.2
运用幂法则并将指数相乘,。
解题步骤 4.2.2.6.3
组合 和 。
解题步骤 4.2.2.6.4
约去 的公因数。
解题步骤 4.2.2.6.4.1
约去公因数。
解题步骤 4.2.2.6.4.2
重写表达式。
解题步骤 4.2.2.6.5
计算指数。
解题步骤 4.2.3
乘以 。
解题步骤 4.2.3.1
将 乘以 。
解题步骤 4.2.3.2
将 乘以 。
解题步骤 4.2.4
将 乘以 。
解题步骤 4.2.5
合并和化简分母。
解题步骤 4.2.5.1
将 乘以 。
解题步骤 4.2.5.2
对 进行 次方运算。
解题步骤 4.2.5.3
对 进行 次方运算。
解题步骤 4.2.5.4
使用幂法则 合并指数。
解题步骤 4.2.5.5
将 和 相加。
解题步骤 4.2.5.6
将 重写为 。
解题步骤 4.2.5.6.1
使用 ,将 重写成 。
解题步骤 4.2.5.6.2
运用幂法则并将指数相乘,。
解题步骤 4.2.5.6.3
组合 和 。
解题步骤 4.2.5.6.4
约去 的公因数。
解题步骤 4.2.5.6.4.1
约去公因数。
解题步骤 4.2.5.6.4.2
重写表达式。
解题步骤 4.2.5.6.5
计算指数。
解题步骤 4.2.6
乘以 。
解题步骤 4.2.6.1
将 乘以 。
解题步骤 4.2.6.2
将 乘以 。
解题步骤 4.2.7
在公分母上合并分子。
解题步骤 4.2.8
以因式分解的形式重写 。
解题步骤 4.2.8.1
将 和 相加。
解题步骤 4.2.8.2
通过约去公因数来化简表达式 。
解题步骤 4.2.8.2.1
从 中分解出因数 。
解题步骤 4.2.8.2.2
从 中分解出因数 。
解题步骤 4.2.8.2.3
约去公因数。
解题步骤 4.2.8.2.4
重写表达式。
解题步骤 4.3
将分子乘以分母的倒数。
解题步骤 4.4
将 乘以 。
解题步骤 4.5
将 乘以 。
解题步骤 4.6
合并和化简分母。
解题步骤 4.6.1
将 乘以 。
解题步骤 4.6.2
对 进行 次方运算。
解题步骤 4.6.3
对 进行 次方运算。
解题步骤 4.6.4
使用幂法则 合并指数。
解题步骤 4.6.5
将 和 相加。
解题步骤 4.6.6
将 重写为 。
解题步骤 4.6.6.1
使用 ,将 重写成 。
解题步骤 4.6.6.2
运用幂法则并将指数相乘,。
解题步骤 4.6.6.3
组合 和 。
解题步骤 4.6.6.4
约去 的公因数。
解题步骤 4.6.6.4.1
约去公因数。
解题步骤 4.6.6.4.2
重写表达式。
解题步骤 4.6.6.5
计算指数。
解题步骤 4.7
约去 的公因数。
解题步骤 4.7.1
约去公因数。
解题步骤 4.7.2
用 除以 。
解题步骤 5
结果可以多种形式表示。
恰当形式:
小数形式: