输入问题...
微积分学 示例
解题步骤 1
使 ,其中 。然后使 。请注意,因为 ,所以 为正数。
解题步骤 2
解题步骤 2.1
化简 。
解题步骤 2.1.1
化简每一项。
解题步骤 2.1.1.1
对 运用乘积法则。
解题步骤 2.1.1.2
对 进行 次方运算。
解题步骤 2.1.2
从 中分解出因数 。
解题步骤 2.1.3
从 中分解出因数 。
解题步骤 2.1.4
从 中分解出因数 。
解题步骤 2.1.5
使用勾股恒等式。
解题步骤 2.1.6
将 重写为 。
解题步骤 2.1.7
假设各项均为正实数,从根式下提出各项。
解题步骤 2.2
化简。
解题步骤 2.2.1
从 中分解出因数 。
解题步骤 2.2.2
对 运用乘积法则。
解题步骤 2.2.3
对 进行 次方运算。
解题步骤 2.2.4
约去 和 的公因数。
解题步骤 2.2.4.1
从 中分解出因数 。
解题步骤 2.2.4.2
约去公因数。
解题步骤 2.2.4.2.1
从 中分解出因数 。
解题步骤 2.2.4.2.2
约去公因数。
解题步骤 2.2.4.2.3
重写表达式。
解题步骤 2.2.5
组合 和 。
解题步骤 2.2.6
组合 和 。
解题步骤 2.2.7
组合 和 。
解题步骤 2.2.8
对 进行 次方运算。
解题步骤 2.2.9
对 进行 次方运算。
解题步骤 2.2.10
使用幂法则 合并指数。
解题步骤 2.2.11
将 和 相加。
解题步骤 2.2.12
将 移到 的左侧。
解题步骤 2.2.13
约去 和 的公因数。
解题步骤 2.2.13.1
从 中分解出因数 。
解题步骤 2.2.13.2
约去公因数。
解题步骤 2.2.13.2.1
从 中分解出因数 。
解题步骤 2.2.13.2.2
约去公因数。
解题步骤 2.2.13.2.3
重写表达式。
解题步骤 2.2.14
约去 和 的公因数。
解题步骤 2.2.14.1
从 中分解出因数 。
解题步骤 2.2.14.2
约去公因数。
解题步骤 2.2.14.2.1
从 中分解出因数 。
解题步骤 2.2.14.2.2
约去公因数。
解题步骤 2.2.14.2.3
重写表达式。
解题步骤 3
由于 对于 是常数,所以将 移到积分外。
解题步骤 4
解题步骤 4.1
将 重写为 。
解题步骤 4.2
将 重写为正弦和余弦形式。
解题步骤 4.3
将 重写为正弦和余弦形式。
解题步骤 4.4
乘以分数的倒数从而实现除以 。
解题步骤 4.5
将 写成分母为 的分数。
解题步骤 4.6
约去 的公因数。
解题步骤 4.6.1
约去公因数。
解题步骤 4.6.2
重写表达式。
解题步骤 5
使用半角公式将 重新书写为 的形式。
解题步骤 6
由于 对于 是常数,所以将 移到积分外。
解题步骤 7
解题步骤 7.1
将 乘以 。
解题步骤 7.2
将 乘以 。
解题步骤 8
将单个积分拆分为多个积分。
解题步骤 9
应用常数不变法则。
解题步骤 10
由于 对于 是常数,所以将 移到积分外。
解题步骤 11
解题步骤 11.1
设 。求 。
解题步骤 11.1.1
对 求导。
解题步骤 11.1.2
因为 对于 是常数,所以 对 的导数是 。
解题步骤 11.1.3
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 11.1.4
将 乘以 。
解题步骤 11.2
使用 和 重写该问题。
解题步骤 12
组合 和 。
解题步骤 13
由于 对于 是常数,所以将 移到积分外。
解题步骤 14
对 的积分为 。
解题步骤 15
化简。
解题步骤 16
解题步骤 16.1
使用 替换所有出现的 。
解题步骤 16.2
使用 替换所有出现的 。
解题步骤 16.3
使用 替换所有出现的 。
解题步骤 17
解题步骤 17.1
组合 和 。
解题步骤 17.2
运用分配律。
解题步骤 17.3
组合 和 。
解题步骤 17.4
乘以 。
解题步骤 17.4.1
将 乘以 。
解题步骤 17.4.2
将 乘以 。
解题步骤 18
重新排序项。