输入问题...
微积分学 示例
解题步骤 1
解题步骤 1.1
设 。求 。
解题步骤 1.1.1
对 求导。
解题步骤 1.1.2
根据加法法则, 对 的导数是 。
解题步骤 1.1.3
计算 。
解题步骤 1.1.3.1
因为 对于 是常数,所以 对 的导数是 。
解题步骤 1.1.3.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 1.1.3.3
将 乘以 。
解题步骤 1.1.4
使用常数法则求导。
解题步骤 1.1.4.1
因为 对于 是常数,所以 对 的导数为 。
解题步骤 1.1.4.2
将 和 相加。
解题步骤 1.2
使用 和 重写该问题。
解题步骤 2
解题步骤 2.1
将 乘以 。
解题步骤 2.2
将 移到 的左侧。
解题步骤 3
由于 对于 是常数,所以将 移到积分外。
解题步骤 4
解题步骤 4.1
化简。
解题步骤 4.1.1
组合 和 。
解题步骤 4.1.2
组合 和 。
解题步骤 4.2
应用指数的基本规则。
解题步骤 4.2.1
通过将 乘以 次幂来将其移出分母。
解题步骤 4.2.2
将 中的指数相乘。
解题步骤 4.2.2.1
运用幂法则并将指数相乘,。
解题步骤 4.2.2.2
将 乘以 。
解题步骤 5
根据幂法则, 对 的积分是 。
解题步骤 6
解题步骤 6.1
化简。
解题步骤 6.1.1
组合 和 。
解题步骤 6.1.2
使用负指数规则 将 移动到分母。
解题步骤 6.2
将 重写为 。
解题步骤 6.3
化简。
解题步骤 6.3.1
组合 和 。
解题步骤 6.3.2
组合 和 。
解题步骤 6.3.3
将 乘以 。
解题步骤 6.3.4
将 乘以 。
解题步骤 7
使用 替换所有出现的 。