输入问题...
微积分学 示例
解题步骤 1
解题步骤 1.1
计算分子和分母的极限值。
解题步骤 1.1.1
取分子和分母极限值。
解题步骤 1.1.2
将 代入 来计算 的极限值。
解题步骤 1.1.3
计算分母的极限值。
解题步骤 1.1.3.1
因为正切是连续的,应将极限移动至三角函数内。
解题步骤 1.1.3.2
将 代入 来计算 的极限值。
解题步骤 1.1.3.3
的准确值为 。
解题步骤 1.1.3.4
该表达式包含分母 。该表达式无定义。
无定义
解题步骤 1.1.4
该表达式包含分母 。该表达式无定义。
无定义
解题步骤 1.2
因为 是不定式,所以应该应用洛必达法则。洛必达法则表明,函数的商的极限等于它们导数的商的极限。
解题步骤 1.3
求分子和分母的导数。
解题步骤 1.3.1
对分子和分母进行求导。
解题步骤 1.3.2
使用幂法则求微分,根据该法则, 等于 ,其中 。
解题步骤 1.3.3
对 的导数为 。
解题步骤 2
解题步骤 2.1
当 趋于 时,利用极限的除法定则来分解极限。
解题步骤 2.2
计算 的极限值,当 趋近于 时此极限值为常数。
解题步骤 2.3
使用极限幂法则把 的指数 移到极限外。
解题步骤 2.4
因为正割是连续的,应将极限移动至三角函数内。
解题步骤 3
将 代入 来计算 的极限值。
解题步骤 4
解题步骤 4.1
将 重写为 。
解题步骤 4.2
将 重写为 。
解题步骤 4.3
将 重写为正弦和余弦形式。
解题步骤 4.4
乘以分数的倒数从而实现除以 。
解题步骤 4.5
将 乘以 。
解题步骤 4.6
的准确值为 。
解题步骤 4.7
一的任意次幂都为一。