微积分学 示例

绘制图像 (x)^3 的自然对数
解题步骤 1
求渐近线。
点击获取更多步骤...
解题步骤 1.1
将对数的自变量设为零。
解题步骤 1.2
求解
点击获取更多步骤...
解题步骤 1.2.1
取方程两边的指定根来消去方程左边的指数。
解题步骤 1.2.2
化简
点击获取更多步骤...
解题步骤 1.2.2.1
重写为
解题步骤 1.2.2.2
假设各项均为实数,将其从根式下提取出来。
解题步骤 1.3
垂直渐近线出现在
垂直渐近线:
垂直渐近线:
解题步骤 2
求在 处的点。
点击获取更多步骤...
解题步骤 2.1
使用表达式中的 替换变量
解题步骤 2.2
化简结果。
点击获取更多步骤...
解题步骤 2.2.1
一的任意次幂都为一。
解题步骤 2.2.2
的自然对数为
解题步骤 2.2.3
最终答案为
解题步骤 2.3
转换成小数。
解题步骤 3
求在 处的点。
点击获取更多步骤...
解题步骤 3.1
使用表达式中的 替换变量
解题步骤 3.2
化简结果。
点击获取更多步骤...
解题步骤 3.2.1
进行 次方运算。
解题步骤 3.2.2
最终答案为
解题步骤 3.3
转换成小数。
解题步骤 4
求在 处的点。
点击获取更多步骤...
解题步骤 4.1
使用表达式中的 替换变量
解题步骤 4.2
化简结果。
点击获取更多步骤...
解题步骤 4.2.1
进行 次方运算。
解题步骤 4.2.2
最终答案为
解题步骤 4.3
转换成小数。
解题步骤 5
可以使用 处的垂直渐近线和点 画出对数函数的图像。
垂直渐近线:
解题步骤 6